
Formal Veri�cation of the Interactive Convergence Clock

Synchronization Algorithm
1

John Rushby and Friedrich von Henke

Computer Science Laboratory

SRI International

Technical Report CSL-89-3R

February 1989, Revised August 1991

1This work was performed for the National Aeronautics and Space Administration under
contract NAS1 17067.

Abstract

We describe a formal speci�cation and mechanically checked veri�ca-
tion of the Interactive Convergence Clock Synchronization Algorithm of

Lamport and Melliar-Smith [16]. In the course of this work, we dis-
covered several technical aws in the analysis given by Lamport and

Melliar-Smith, even though their presentation is unusually precise and
detailed. As far as we know, these aws (a�ecting the main theorem
and four of its �ve lemmas) were not detected by the \social process"

of informal peer scrutiny to which the paper has been subjected since
its publication. We discuss the aws in the published proof and give a

revised presentation of the analysis that not only corrects the aws in
the original, but is also more precise and, we believe, easier to follow.

This informal presentation was derived directly from our formal spec-
i�cation and veri�cation. Some of our corrections to the aws in the

original require slight modi�cations to the assumptions underlying the
algorithm and to the constraints on its parameters, and thus change the

external speci�cation of the algorithm.
The formal analysis of the Interactive Convergence Clock Synchro-

nization Algorithm was performed using the Ehdm formal speci�cation

and veri�cation environment. This application of Ehdm provides a
demonstration of some of the capabilities of the system.

Note: This second edition of the report presents a revised version of
the formal speci�cation and veri�cation that exploits some of the features

introduced into Ehdm since the original veri�cation was performed, and
also improves the substance of the veri�cation in three respects.

Contents

1 Introduction 1

1.1 Note on the Revised Edition : 2

1.2 Acknowledgments : 3

2 Traditional Mathematical Presentation of the Algorithm and its

Analysis 4

2.1 Informal Overview : 6

2.2 Statement of the Clock Synchronization Problem and Algorithm : : 9

2.3 Proof that the Algorithm maintains Synchronization : : : : : : : : : 13

2.3.1 Overview of the Proof : 15

2.3.2 The Proof in Detail : 17

2.3.2.1 Constraints on Parameters : : : : : : : : : : : : : : 17

2.3.2.2 The Lemmas : 18

2.3.2.3 The Correctness Theorem : : : : : : : : : : : : : : : 25

3 Comparison with the Published Analysis by Lamport and Melliar-

Smith 26

3.1 The De�nition of a Good Clock : 26

3.2 Explicit Functional Dependencies : 27

3.3 Approximations and Neglect of Small Quantities : : : : : : : : : : : 28

3.3.1 A Flaw in the Main Induction : : : : : : : : : : : : : : : : : : 28

3.3.2 A Flaw in Lemma 4 : 29

3.4 The Interval in which a Clock is a \Good Clock" : : : : : : : : : : : 30

3.4.1 Falsehood of Lemma 1 : 30

3.4.2 Falsehood of Lemma 2 : 31

3.5 Sundry Minor Flaws and Di�culties : : : : : : : : : : : : : : : : : : 32

3.5.1 Falsehood and Unnecessary Generality of Lemma 3 : : : : : : 32

3.5.2 Missing Requirements for Clock Synchronization Condition S2 32

3.5.3 Typographical Errors in Lemmas 2 and 4 : : : : : : : : : : : 32

i

ii Contents

4 Formal Speci�cation and Veri�cation in EHDM 34

4.1 Overview of Ehdm : 34

4.1.1 The Speci�cation Language : : : : : : : : : : : : : : : : : : : 35

4.1.1.1 Declarations : 35

4.1.1.2 Modules : 38

4.1.1.3 Proofs : 39

4.1.1.4 Other Components of Ehdm used in the Proof : : : 43

4.2 The Formal Speci�cation and Veri�cation of the Algorithm : : : : : 44

4.2.1 Supporting Theories : 46

4.2.1.1 Numeric types : 46

4.2.1.2 Arithmetics : 47

4.2.1.3 Absolutes : 48

4.2.1.4 Natprops : 48

4.2.1.5 Functionprops : 49

4.2.1.6 Noetherian : 49

4.2.1.7 Natinduction : 50

4.2.1.8 Sums and Sigmaprops : : : : : : : : : : : : : : : : : 50

4.2.2 Speci�cation Modules : 53

4.2.2.1 Time : 53

4.2.2.2 Clocks : 53

4.2.2.3 Algorithm : 54

4.2.3 Proof Modules : 55

4.2.3.1 Clockprops : 55

4.2.3.2 Lemmas 1 to 6 : 56

4.2.3.3 Summations : 56

4.2.3.4 Juggle : 56

4.2.3.5 Main and Top : 57

4.3 Statistics and Observations : 57

5 Conclusions 65

Bibliography 70

A Cross-Reference Listing 73

B Proof-Chain Analysis 81

B.1 Clock Synchronization Condition S1 : : : : : : : : : : : : : : : : : : 81

B.2 Clock Synchronization Condition S2 : : : : : : : : : : : : : : : : : : 88

Contents iii

C Speci�cations 92

numeric types : 92
numeric types tcc : 92
numeric types tcc proofs : 93

arithmetics : 94
arithmetics tcc : 95

absolutes : 95
absolutes tcc : 97

natprops : 97
natprops tcc : 98

functionprops : 99
noetherian : 99

natinduction : 100
natinduction tcc : 101
sums : 102

sums tcc : 104
sigmaprops : 105

sigmaprops tcc : 109
time : 109

clocks : 110
algorithm : 111

algorithm tcc : 113
clockprops : 114

lemma1 : 115
lemma2 : 116
lemma3 : 117

lemma4 : 118
lemma5 : 119

lemma6 : 120
summations : 122

summations tcc : 124
juggle : 125

juggle tcc : 126
main : 127

top : 127

D Raw Speci�cations 128

List of Figures

2.1 Statements of the Principal Lemmas used in The Proof : : : : : : : 16

4.1 An Example Ehdm Speci�cation Module : : : : : : : : : : : : : : : 40
4.2 LaTEX-printed Example Ehdm Speci�cation Module : : : : : : : : : 45

iv

List of Tables

2.1 Notation, Parameters, and Concepts : : : : : : : : : : : : : : : : : : 14
2.2 Typical Values for the Parameters : : : : : : : : : : : : : : : : : : : 14

4.1 Proof Summaries for Ehdm Modules : : : : : : : : : : : : : : : : : : 58

A.1 Translations for Identi�ers Used in the Speci�cation : : : : : : : : : 73

A.2 Ehdm Identifers used in the Speci�cation : : : : : : : : : : : : : : : 80

v

vi

Chapter 1

Introduction

The Interactive Convergence Clock Synchronization Algorithm is an important and

fairly di�cult algorithm. It is important because the synchronization of clocks is
fundamental to trustworthy fault tolerance mechanisms for critical process control

systems such as y-by-wire digital avionics. It is di�cult because its analysis must
consider the relationships among quantities (i.e., clock values) that are continually
changing|and changing moreover at slightly di�erent rates|and because it must

deal with the possibility that some of the clocks may be faulty and may exhibit
arbitrary behavior. Thus, although the algorithm is easy to describe and a broad

understanding of why it works can be obtained fairly readily, its rigorous analysis,
and the derivation of bounds on the synchronization that it can achieve, require

attention to a mass of detail and very careful explication of assumptions.

Lamport and Melliar-Smith's paper [16] is a landmark in the �eld. They not only
introduced the Interactive Convergence Clock Synchronization Algorithm, but two

other algorithms as well, and they also developed formalizations of the assumptions
and desired properties that made it possible to give a precise statement and proof for

the correctness of clock synchronization algorithms. Nonetheless, the proof given by
Lamport and Melliar-Smith is hard to internalize: there is much detailed argument,
some involving approximate arithmetic and neglect of insigni�cant terms, and it is

not easy to convince oneself that all the details mesh correctly. It is precisely in per-
forming conceptually simple, but highly detailed arguments (i.e., calculations) that

the human mind seems most fallible, and machines most e�ective. Consequently,
the Interactive Convergence Clock Synchronization Algorithm seems an excellent

candidate for mechanical veri�cation. This report describes a mechanized proof of
the correctness of the algorithm using the Ehdm formal speci�cation and veri�cation

environment.

As we performed the formal speci�cation and veri�cation of the Interactive
Convergence Clock Synchronization Algorithm, we discovered that the presenta-

tion given by Lamport and Melliar-Smith was awed in several details. One of the

1

2 Chapter 1. Introduction

principal sources of error and di�culty was the use by Lamport and Melliar-Smith

of approximations|i.e., approximate equality (�) and inequalities (<
�

and >
�
)|in

order to \simplify the calculations." We eventually found that elimination of the
approximations not only removed one class of errors, but actually simpli�ed the

analysis and presentation. We also found and corrected several other technical aws
in the published proof of Lamport and Melliar-Smith. Our revised presentation of

the algorithm and its proof are given in Chapter 2; a discussion of the aws found
in the original is provided in Chapter 3. Some of our corrections require slight mod-

i�cations to the assumptions underlying the algorithm, and to the constraints on
its parameters, and thus change the external speci�cation of the algorithm. Our

formal speci�cation and veri�cation of the algorithm is described in Chapter 4; the
detailed listings are to be found in the Appendices.

We discuss the lessons learned from this exercise, and our view of the role and

utility of formal speci�cation and veri�cation in Chapter 5. To summarize those
conclusions: we now believe the Interactive Convergence Clock Synchronization Al-

gorithm to be correct, not because our theorem prover says it is, but because the
experience of arguing with the theorem prover has forced us to clarify our assump-

tions and proofs to the point where we think we really understand the algorithm
and its analysis. As a result, we can present an argument for the correctness of the
algorithm, in the style of a traditional mathematical presentation, that we believe

is truly compelling. This presentation is given in Chapter 2 and follows very closely
the presentation given in Sections 2.1, 3, and 4 of the original paper [16, pages

53{66]. However, the details of the proof were extracted directly from our formal
veri�cation.

It is this traditional mathematical presentation of our revised proof of correctness

for the Interactive Convergence Clock Synchronization Algorithm that we consider
the main contribution of this work; we hope that anyone contemplating using the

algorithm will study our presentation and will convince themselves of the correctness
of the algorithm and of the appropriateness of its assumptions (and of the ability of

their implementation to satisfy those assumptions). We stress that our presentation
merely dots the i's and crosses some important t's in the original; the substance

of all the arguments is due to Lamport and Melliar-Smith. Those already familiar
with the original presentation should probably read Chapter 3 before Chapter 2.
(Indeed, they may then want to skip Chapter 2 altogether.)

1.1 Note on the Revised Edition

This second edition of the report presents a revised version of the veri�cation that

exploits some of the features introduced into Ehdm since the original veri�cation
was performed in 1988. The main bene�t has been the ability to extend theories con-

servatively using de�nitions, and thereby to drastically reduce the number of axioms

1.2. Acknowledgments 3

required. Enhancements to the Ehdm theorem prover have also allowed treatment

of proofs involving division and nonlinear multiplication to be much simpli�ed. The
substance of the veri�cation has been improved in three respects: the de�nition of a

good clock has been corrected, constraints on the initial clock corrections C
(0)
p have

been eliminated, and the organization of the main induction has been revised to

eliminate an apparent circularity.

1.2 Acknowledgments

This work was performed for the National Aeronautics and Space Administration

under contract NAS1 17067 (Task 4). The guidance and advice provided by our
technical monitor, Ricky Butler of NASA Langley Research Center, was extremely

valuable. We owe an obvious debt to Leslie Lamport and Michael Melliar-Smith,
who not only invented the algorithm studied here, but also developed the formaliza-

tion and analysis that is the basis for our mechanically-assisted veri�cation. Leslie
Lamport also provided helpful comments on an earlier version of this report.

Two of the three improvements in the substance of the veri�cation incorporated
in this revised edition of the report were suggested by Bill Young of Computational

Logic Inc., who has repeated our veri�cation using an extended version of the Boyer-
Moore theorem prover [30].

David Fura of Boeing High Technology Center pointed out obscurities and op-

portunities for misinterpretation in the explanation of clock corrections given in the
�rst edition, and suggested several improvements in the exposition that have been

incorporated in this revised edition.

Chapter 2

Traditional Mathematical

Presentation of the Algorithm

and its Analysis

Many distributed systems depend upon a common notion of time that is shared

by all components. Usually, each component contains a reasonably accurate clock
and these clocks are initially synchronized to some common value. Because the

clocks may not all run at precisely the same rate, they will gradually drift apart
and it will be necessary to resynchronize them periodically. In a fault-tolerant
system, this resynchronization must be robust even if some clocks are faulty: the

presence of faulty clocks should not prevent those components with good clocks from
synchronizing correctly.

The design, and especially the analysis, of fault-tolerant clock synchronization
algorithms is a surprisingly di�cult endeavor, especially if one admits the possibility

of \two-faced" clocks and other so-called Byzantine faults.

Consider a system with three components: A;B, and C; A and C have good
clocks, but B's clock is faulty. A's clock indicates 2.00 pm, C's 2.01 pm, and
B's clock indicates 1:58 pm to A but 2.03 pm to C. A sees that C's clock is

ahead of its own, and that B's is behind by a somewhat greater amount; it would
be natural therefore for A to set its own clock back a little. This situation is

reversed, however, when considered from C's perspective. C sees that A's clock is
a little behind its own and that B's is ahead by a rather greater amount; it will be

natural for C to set its own clock forward a little. Thus the faulty clock B has the
e�ect of driving the good clocks A and C further apart. The behavior of B's clock

that produces this e�ect may seem actively malicious and therefore implausible.
This is not so, however. A failed clock may plausibly act as a random number

generator (noisy diodes are indeed used as hardware random number generators) and

4

5

could thereby distribute very di�erent values to di�erent components in response

to inquiries received very close together. Of course, one can postulate a design in
which a single clock value is latched and then distributed to all other components|
but then one must provide compelling evidence for the correctness of the latching

mechanism and the impossibility of communication errors, and for the correctness
of a clock synchronization algorithm built on these assumptions.

Accurate clock synchronization is one of the fundamental requirements for fault-

tolerant real-time control systems, such as ight-critical digital avionics. These
systems use replicated processors in order to tolerate hardware faults; several pro-

cessors perform each computation and the results are subjected to majority voting.
It is vital to this process that the replicated processors keep in step with each other
so that voting is performed on computations belonging to the same \frame." Since

synchronization of processors' clocks is essential for the fault-tolerance provided by
this approach, it is clear that the clock synchronization process must itself be excep-

tionally fault-tolerant. In particular, it should make only very robust assumptions
about the behavior of faulty processors' clocks.

The strongest clock synchronization algorithms make no assumptions whatever
about the behavior of faulty clocks. Lamport and Melliar-Smith [16] describe three

such fault-tolerant clock synchronization algorithms. These algorithms work in the
presence of any kind of fault|including malicious two-faced clocks such as that

described above. Of course, there must not be too many faulty clocks. The �rst
algorithm presented by Lamport and Melliar-Smith, the Interactive Convergence

Algorithm, can tolerate up to m faults amongst 3m + 1 clocks. Thus, 4 clocks are
required to guarantee the ability to withstand a single fault. Dolev, Halpern and

Strong have shown that 3m+ 1 clocks are required to allow synchronization in the
presence of m faults unless digital signatures are used [11]. Thus, the Interactive

Convergence algorithm requires the minimum possible number of clocks for its class
of algorithms.

The Interactive Convergence Clock Synchronization Algorithm is quite easy to
describe in broad outline: periodically, each processor reads the di�erences between

its own clock and those of all other processors, replaces those di�erences that are
\too large" by zero, computes the average of the resulting values, and adjusts its

clock by that amount. For descriptions of other clock synchronization algorithms,
presented in a consistent notation, see the surveys by Ramanathan [22] (which in-

cludes hardware techniques) and Schneider [25]. Implementation issues are well
described by Kopetz and Ochsenreiter [14]. A new class of probabilistic clock syn-
chronization algorithms that have extremely good performance (in terms of how

close the clocks can be synchronized) has recently been introduced by Cristian [9],
but so far the algorithms in this class are not tolerant of Byzantine failures.

In the next section we give an informal overview of the analysis of the Interactive

Convergence Clock Synchronization Algorithm. This should support the reader's

6 Traditional Mathematical Presentation

intuition during the more formal analysis in the section that follows. Although

\formal" in the sense of traditional mathematical presentations, this level of analysis
is not truly formal (in the sense of being based on an explicit set of axioms and rules
of inference)|that level of presentation is described in Chapter 4 and its supporting

Appendices.

2.1 Informal Overview

We assume a number of components (generally called \processors") each having
its own clock. Nonfaulty clocks all run at approximately the correct rate and are
assumed to be approximately synchronized initially. Due to the slight di�erences in

their running rates, the clocks will gradually drift apart and must be resynchronized
periodically. We are concerned with the problem of performing this resynchroniza-

tion; we are not concerned with the problem of maintaining the clocks in synchrony
with some external \objective" time (see Lamport [18] for a discussion of this prob-

lem), nor are we concerned with the problem of synchronizing the clocks initially,
although the closeness with which the initial synchronization is performed will limit

how closely the clocks can be brought together in subsequent resynchronizations.1

The goal of periodic resynchronizations is to ensure that all nonfaulty clocks have
approximately the same value at any time. A secondary goal is to accomplish this

without requiring excessively large adjustments to the value of any clock during the
synchronization process. Formalizing these two goals and the assumptions identi�ed

earlier is one of the major steps in the speci�cation and veri�cation of the Interactive
Convergence Clock Synchronization Algorithm. For future convenience, we label

and explicitly identify them here (using the same names as [16]), and give them the
following informal characterizations:

Requirements

S1: At any time, the values of all the nonfaulty processors' clocks must be approx-
imately equal. (The maximum skew between any two good clocks is denoted

by �.2)

S2: There should be a small bound (denoted �) on the amount by which a nonfaulty

processor's clock is changed during each resynchronization. (When taken with
A1 below, this requirement rules out trivial solutions that merely set the clocks

to some �xed value.)

1The initial synchronization establishes a bound that cannot be bettered in the worst-case; in

practice subsequent resynchronizations may improve on the initial synchronization.
2A summary of the notation and de�nitions used is given in Table 2.1 on Page 14.

2.1. Informal Overview 7

Assumptions

A0: All clocks are initially synchronized to approximately the same value. (The

maximum initial skew is denoted �0.)

A1: All nonfaulty processors' clocks run at approximately the correct rate. (The
maximum drift is a parameter denoted by �.)

Schneider [25] shows that all Byzantine clock synchronization algorithms can be

viewed as di�erent re�nements of a single paradigm: periodically, the processors
decide that it is time to resynchronize their clocks, each processor reads the clocks

of the other processors, forms a \fault tolerant average" of their values, and sets its
own clock to that value. There are three main elements to this paradigm:

1. Each processor must be able to tell when it is time to resynchronize its clock
with those of other processors,

2. Each processor must have some way of reading the clocks of other processors,

3. There must be a convergence function which each processor uses to form the
\fault tolerant average" of clock values.

In the Interactive Convergence Clock Synchronization Algorithm, each processor

performs a constant round of activity, executing a series of tasks over and over
again. Each iteration of this series of tasks consumes an interval of time called
a period . All periods are supposed to be of the same duration, denoted by R.

The �nal task in each period, occupying an interval of time denoted by S, is the
clock synchronization task. Each processor uses its own clock to schedule the tasks

performed during each period. Thus, each processor relies on its own clock to trigger
the clock synchronization task; because the nonfaulty clocks were resynchronized

during the previous synchronization task and cannot have drifted too far apart since
then, all processors with nonfaulty clocks will enter their clock synchronization tasks

at approximately the same time.

During its clock synchronization task, each processor reads the clock of every

other processor. Of course, clock values are constantly changing and go \stale" if
a long (or indeterminate) amount of time goes by between them being read and

being used. For this reason, it is much more useful for each processor to record
the di�erence between its clock and that of other processors. The closeness of the

synchronization that can be accomplished is strongly inuenced by how accurately
these clock di�erences can be read. This gives rise to the third assumption required

by the Interactive Convergence Clock Synchronization Algorithm:

8 Traditional Mathematical Presentation

Assumption

A2: A nonfaulty processor can read the di�erence between its own clock and that
of another nonfaulty processor with at most a small error. (The upper bound

on this error is a parameter denoted by �).

The remaining element that is needed to characterize the Interactive Conver-
gence Clock Synchronization Algorithm is the de�nition of its convergence function.

As suggested above, each processor should set its clock to a \fault tolerant aver-
age" of the clock values from all the processors. The obvious \average" value to

use is the arithmetic mean, but this is not fault tolerant if faulty processors inject
wildly erroneous values into the process. A simple remedy is for each processor

to use its own clock value in place of those values that di�er by \too much" from
its own value (equivalently, replace clock di�erences that are \too large" by zero).
This function, called the \egocentric mean," is the convergence function used in

the Interactive Convergence Clock Synchronization Algorithm. The parameter that
determines when clock di�erences are \too large" is denoted �.

To gain an idea of why this works, consider two nonfaulty processors p and q. For
simplicity, assume that these processors perform their synchronization calculations

simultaneously and instantaneously. If r is also a nonfaulty processor, then the
estimates that p and q form of r's clock value can di�er by at most 2�. If r is a

faulty processor, however, p and q could form estimates of its clock value that di�er
by as much as 2� + �. (Since r could indicate a value as large as � di�erent from

each of p and q without being disregarded, and these processors could themselves
have clocks that are � apart.) Assuming there are n processors, of which m are
faulty, the egocentric means formed by p and q can therefore di�er from each other

by as much as
(n�m)2�+m(� + 2�)

n
:

Thus, provided

� � 2� +
2m�

n�m
; (2:1)

this procedure will maintain the clocks of p and q within � of each other, as required.

Since a nonfaulty processor's clock can di�er from another's by as much as �,

and reading its value can introduce a further error of �, it is clear that we must
require

� � � + �;

since otherwise perfectly good clock values could be disregarded. This gives

�� � � �

2.2. Statement of the Clock Synchronization Problem and Algorithm 9

which, when taken with (2.1), yields

3� �
n� 3m

n �m
�: (2:2)

Because all the variables involved are strictly positive (except m, which is merely

nonnegative), (2.2) implies
n > 3m;

showing that four clocks are required to tolerate a single failure. (Notice that seven

clocks are required to withstand two simultaneous failures. However, if each failure
can be detected and the system recon�gured to eliminate faulty clocks before another

failure occurs, then �ve clocks can withstand two failures.)
Lamport and Melliar-Smith raise a couple of �ne points that should be considered

in implementation and application of the Interactive Convergence Clock Synchro-
nization Algorithm. The correction that occurs at each synchronization causes a

discontinuity in clock values. If a correction is positive (because the clock has been
running slow), then some units of clock time will vanish in the discontinuity as the

correction is applied. Any task scheduled to start in the vanished interval might
not occur at all. Conversely, a negative correction (for a fast clock), can cause units

of clock time to repeat, possibly causing a task to be executed a second time. One
solution to these di�culties is to follow each clock synchronization with a \do noth-
ing" task of duration at least �. An alternative, that has other attractive properties,

is to avoid the discontinuity altogether and spread the application of the correction
evenly over the whole period [16, pages 54{55].

2.2 Statement of the Clock Synchronization Problem

and Algorithm

The informal argument presented above did not account for the fact that the clocks
may drift further apart in the period between synchronizations, nor did it allow for

the facts that the algorithm takes time to perform, and that di�erent processors
will start it at slightly di�erent times. Taking care of these details, and being

precise about the assumptions employed, is the task of the more detailed argument
presented in this section.

The �rst step is to formalize what is meant by a clock, and what it means for a
clock to run at approximately the correct rate.

Physically, a clock is a counter that is incremented periodically by a crystal or
line-frequency oscillator. By a suitable linear transformation, the counter value is

converted to a representation of conventional \time" (e.g., the number of seconds
that have elapsed since January 1st, 1960, Coordinated Universal Time). This

internal estimation of time may be expected to drift somewhat from the external,

10 Traditional Mathematical Presentation

standard record of time maintained by international bodies. In order to distinguish

these two notions of time, we will describe the internal estimate of time that may
be read from a processor's clock as clock time, and the external notion of time as
real time. Real time need not be directly observable; the important point is that it

provides a frame of reference that is common to all clocks. Following Lamport and
Melliar-Smith, we use lowercase letters to denote quantities that represent real time,

and upper case for quantities that represent clock time. Thus, \second" denotes the
unit of real time, while \second" denotes the unit of clock time. Within this

convention, Roman letters are used to denote \large" values (on the order of tens
of milliseconds), while Greek letters are used to denote \small" values (on the order

of tens of microseconds).

We are interested in process control applications where events are triggered by

the passage of clock time|e.g., \start the furnace at 9 am and stop it at 5 pm,"
or \run the clock synchronization task every 5 seconds." Our notion of synchro-

nization is that activities scheduled for the same clock time in di�erent processors
should actually occur very close together in real time.3 Thus, we de�ne a clock c to

be a mapping from clock time to real time: c(T) denotes the real time at which clock
c reads T . Two clocks c and c 0 are then said to be synchronized to within real time

� at clock time T if they reach the value T within � seconds of each other|i.e., if
jc(T)� c 0(T)j < �. The real time quantity jc(T)� c 0(T)j is called the skew between

c and c 0 at clock time T .

Some techniques for clock synchronization adjust the rates at which clocks \tick"

by modifying certain hardware parameters. We are concerned with software solu-
tions, and cannot change the rate at which the clocks \tick." What we can do is

fabricate \logical clocks" that are o�set from the physical clocks in order to achieve
better synchronization. The o�sets are adjusted periodically in order to resynchro-

nize the logical clocks.

Suppose the physical clock c reads T 0 when its logical clock should read T . Then

C = T 0 � T is the o�set or correction that should be subtracted from the physical
clock reading to yield the value to be reported as the logical clock reading. Since

the corrected value T is reported when the physical clock reads T 0 (i.e., T +C), we
see that the logical clock time T is reported at real time c(T + C).

A physical clock is a \good clock" if it runs at a rate very close to the passage of
real time. Modern technology is able to provide clocks that satisfy this requirement

to very high degrees of accuracy. Lamport and Melliar-Smith de�ne a \good clock"
formally in terms of the derivative of the clock function. However, since we will be

3For other classes of applications, the reverse notion may be more appropriate|e.g., if a single

event is to be given (clock time) timestamps by di�erent processors, then we may want the di�erent
timestamps (all triggered by the same event at the same real time) to be very close together. Lam-

port and Melliar-Smith [16, page 61] indicate how to convert between this notion of synchronization

and the one used here.

2.2. Statement of the Clock Synchronization Problem and Algorithm 11

using a mechanical veri�cation system, and do not want to have to axiomatize a

fragment of the di�erential calculus, we use a slightly di�erent formulation taken
from Butler [5].

De�nition 1: A clock c is a good clock during the clock time interval [T0; TN] if

j(c(T1)� c(T2))� (T1 � T2)j �
�

2
jT1 � T2j

whenever T1 and T2 are clock times in [T0; TN].

Logical clocks are resynchronized every R seconds. We assume some starting
time T 0, de�ne T (i) = T 0+ iR (i � 0), and let R(i) denote the interval [T (i); T (i+1)],

which we call the i'th period . The actual synchronization task is executed during
the �nal S seconds of each period: all reading and transmitting of clock values
occurs within the interval [T (i+1) � S; T (i+1)], which we call the i'th synchronizing

period and denote by S(i).

We consider a set of n processors, where processor p has clock cp. As explained

above, logical clock values are formed by subtracting a \correction" from the physical

values; the correction used by processor p during the i'th period is denoted C
(i)
p , so

that the real time at which processor p reports logical clock time T during period i

is cp(T + C
(i)
p). We denote this quantity by c

(i)
p (T) and we call c

(i)
p the logical clock

for processor p during the i'th period. We call T + C
(i)
p the adjusted value of T for

processor p in period i and denote it by A
(i)
p (T) (so that c

(i)
p (T) = cp(A

(i)
p (T))).4

The skew between the clocks of processors p and q at time T in R(i) is given by

jc(i)
p
(T)� c(i)

q
(T)j:

The goal of the Interactive Convergence Clock Synchronization Algorithm is to
bound this quantity for good clocks. We assume that all the clocks are synchronized

within �0 of each other at the \starting time" T (0):

A0: For all processors p and q, jc
(0)
p (T (0))� c

(0)
q (T (0))j < �0.

The process control applications that are of interest to us typically perform a

schedule of many separate tasks during each period. Our goal is to ensure that tasks
which are scheduled to occur on di�erent processors at the same clock time during
a particular period actually occur very close to each other in real time. To achieve

this, processor p should perform a task scheduled for time T in the i'th period at

4In the original version of the veri�cation and report, we followed Lamport and Melliar-Smith

and de�ned the initial correction C
(0)
p to be zero. This assumption proved inconvenient when we

considered implementations of the algorithm. Inspection of the proof suggested that it could be
eliminated, and this was con�rmed in the revised formal veri�cation. The consequences were small

changes to internal lemmas, such as adj always pos in module clockprops, that are used to satisfy

the conditions of Lemma 2 in the proof of Lemma 2a.

12 Traditional Mathematical Presentation

the instant its clock actually reads A
(i)
p (T).5 An obvious consequence is that the

i'th period for processor p runs from when its adjusted clock reads T (i) until it reads

T (i+1). That is, it is the clock time interval [A
(i)
p (T (i)); A

(i)
p (T (i+1))]. Therefore, if

a processor's clock is to work long enough to complete the i'th period, it must be

a good clock throughout the interval [A
(0)
p (T (0)); A

(i)
p (T (i+1))]. This motivates the

following de�nition of what it means for a processor to be nonfaulty:

A1: We say that a processor is nonfaulty through period i if its clock is a good

clock in the clock time interval [A
(0)
p (T (0)); A

(i)
p (T (i+1))]:

There is another assumption about nonfaulty processors, which is not formal-

ized and is not considered further during the analysis: this is the assumption that
nonfaulty processors perform the algorithm correctly.

Now we can state formally the goals that the Interactive Convergence Clock

Synchronization Algorithm is to satisfy.

Clock Synchronization Conditions: For all processors p and q, if all but at most

m processors (out of n) are nonfaulty through period i, then

S1: If p and q are nonfaulty through period i, then for all T in R(i)

jc(i)
p
(T)� c(i)

q
(T)j < �:

S2: If processor p is nonfaulty through period i, then

jC(i+1)
p

� C(i)
p
j < �:

We now formalize Assumption A2 concerning the reading of clocks. The idea

is that sometime during the i'th synchronizing period, processor p should obtain
a value that indicates the di�erence between its own clock and that of another

processor q. To synchronize exactly with q at some time T 0 in S(i), p would need

to know the ideal adjustment �
(i)
q p that it should add to its own value so that

c
(i)
p (T 0 + �

(i)
q p) = c

(i)
q (T 0). In practice, p cannot obtain this value exactly, instead,

it obtains an approximation �
(i)
q p that is subject to a small error �. The formal

statement is given below.

A2: If conditions S1 and S2 hold for the i'th period, and processor p is nonfaulty

through period i, then for each other processor q, p obtains a value �
(i)
q p during

the synchronization period S(i). If q is also nonfaulty through period i, then

j�(i)
q p
j � S

5To see this, consider a processor whose clock gains one second every hour and whose periods

are of one hour duration. A task to be performed 5 minutes into period 3 should be started when
the adjusted time reads 3 hours and 5 minutes from the initial time. The correction during period

3 will be -3 seconds, so that the task will be started when the clock actually reads 3 hours, 5

minutes and 3 seconds from the initial time. It can be seen that this is indeed the desired behavior.

2.3. Proof that the Algorithm maintains Synchronization 13

and

jc(i)
p
(T 0 +�(i)

q p
)� c(i)

q
(T 0)j < �

for some time T 0 in S(i).

If p = q, we take �
(i)
q p = 0 so that A2 holds in this case also. Notice that A2

requires S1 and S2 to hold in the period concerned. This is because the method

by which processors read the di�erences between their clocks may require them to
cooperate|which may in turn depend upon their clocks already being adequately

synchronized.
Finally, we can give a formal description of the Interactive Convergence Clock

Synchronization Algorithm (in the following also referred to as \the Algorithm" for
short).

Algorithm: For all processors p:

C(i+1)
p

= C(i)
p

+ �(i)
p
;

where

C(0)
p

is arbitrary,

�(i)
p

=

�
1

n

� nX
r=1

��(i)
r p
; and

��(i)
r p

= if j�(i)
r p
j < � then �(i)

r p
else 0:

A summary of the notation and de�nitions introduced so far is given in Table 2.1

on Page 14. Some typical values for the parameters, based on an experimental
validation using the SIFT computer [6], are given in Table 2.2 on Page 14.6

2.3 Proof that the Algorithm maintains Synchroniza-

tion

We now need to prove that the Interactive Convergence Clock Synchronization Al-

gorithm maintains the clock synchronization conditions S1 and S2. Condition S2 is
easy; the di�cult part of the proof is to show that the Algorithm maintains Condi-

tion S1. The proof is an induction on i|we show that if the clocks are synchronized
through period i, and if su�cient processors remain nonfaulty through period i+1,

6The closeness of the synchronization that can be achieved is dominated by the parameter �.
With modern hardware, it is possible to reduce this value far below the 66.1 �sec. achieved for

SIFT. Modern hardware also supports much higher frame rates (i.e., smaller R and S) than those

for SIFT.

14 Traditional Mathematical Presentation

Symbol Concept

n number of clocks
m number of faulty clocks

R clock time between synchronizations
S clock time to perform synchronization algorithm

T (i) clock time at start of i'th period (= T (0) + iR)

R(i) i'th period (= [T (i); T (i+1)])

S(i) i'th synchronizing interval (= [T (i+1) � S; T (i+1)])

C
(i)
p cumulative correction for p's clock in i'th period

A
(i)
p (T) adjusted value of T for p's clock in i'th period (= T + C

(i)
p)

cp(T) real time when p's clock reads T

c
(i)
p (T) real time in i'th period, when p's clock reads T (= cp(Ap

(i)(T)))

� maximum real time skew between any two good clocks
�0 maximum initial real time skew between any two clocks
� maximum real time clock read error

� maximum clock drift rate

�
(i)
q p clock time di�erence between q and p seen by p in i'th period

� cut o� for �
(i)
q p

��
(i)
q p if j�

(i)
q pj < � then �

(i)
q p else 0

�
(i)
p clock time correction made by p in i'th period (mean of ��i

q p
's)

� maximum correction permitted

Table 2.1: Notation, Parameters, and Concepts

Parameter Value

n 6

R 104.8 msec.
S 3.2 msec

�0 132 �sec. (typically, 10 �sec. is achieved)
� 66.1 �sec. (typically, better than 15 �sec. is achieved)

� 15� 10�6

� 340 �sec.

� 340 �sec.
� 134 �sec. (m = 0), 271 �sec. (m = 1)

Table 2.2: Typical Values for the Parameters

2.3. Proof that the Algorithm maintains Synchronization 15

then the nonfaulty processors will remain synchronized through that next period.

The actual proof is a mass of details, so it will be helpful to sketch the basic approach
�rst. For reference, the statements of the main Lemmas are collected in Figure 2.1.

2.3.1 Overview of the Proof

We are interested in the skew between two nonfaulty processors during the i+ 1'st

period|that is, in the quantity

jc(i+1)
p

(T)� c(i+1)
q

(T)j

where T 2 R(i+1). By the Algorithm,

jc(i+1)
p

(T)� c(i+1)
q

(T)j = jc(i)
p
(T +�(i)

p
)� c(i)

q
(T +�(i)

q
)j; (2:3)

and since good clocks run at approximately the correct rate, c
(i)
p (T + �

(i)
p) and

c
(i)
q (T +�

(i)
q) are close to c

(i)
p (T)+�

(i)
p and to c

(i)
q (T)+�

(i)
q , respectively. From this

it follows that the right hand side of (2.3) can be approximated by

jc(i)
p
(T) + �(i)

p
� [c(i)

q
(T) + �(i)

q
]j:

A major step in the proof, identi�ed as Lemma 2, is concerned with bounding the

error introduced by this approximation. Then, since �
(i)
p and �

(i)
q are the averages

of ��
(i)
r p and ��

(i)
r q, it is natural to consider the individual components

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j: (2:4)

There are two cases to consider. The �rst, in which only p and q are assumed
nonfaulty, is the focus of Lemma 5, while the second, in which r is also assumed
nonfaulty, is considered in Lemma 4. The �rst case is quite easy|the Algorithm

ensures that ��
(i)
r p and ��

(i)
r q can be no larger than �, while c

(i)
p (T) and c

(i)
q (T) can

di�er by no more than � (by the inductive hypothesis). For the second case, Lemma

1 provides the result j�
(i)
r pj < �, so that the Algorithm will establish ��

(i)
r p = �

(i)
r p

and ��
(i)
r q = �

(i)
r q. The quantity (2.4) is then rewritten as

jc(i)
p
(T) + �(i)

r p
� c(i)

r
(T)� [c(i)

q
(T) + �(i)

r q
� c(i)

r
(T)]j:

Regarding this as the absolute di�erence of two similar expressions, we are led to
consider values of the form

jc(i)
p
(T) + �(i)

r p
� c(i)

r
(T)j

which, using Lemma 2, can be approximated by

jc(i)
p
(T + �(i)

r p
)� c(i)

r
(T)j:

Lemma 3 is concerned with quantities of this form.

16 Traditional Mathematical Presentation

Lemma 1: If the clock synchronization conditions S1 and S2 hold for i, and pro-

cessors p and q are nonfaulty through period i+ 1, then

j�(i)
q p
j < �:

Lemma 2: If processor p is nonfaulty through period i+ 1, and T and � are such

that A
(i)
p (T) and A

(i)
p (T+�) are both in the interval [A

(0)
p (T (0)); A

(i+1)
p (T (i+2))], then

jc(i)
p
(T + �)� [c(i)

p
(T) + �]j �

�

2
j�j:

Lemma 3: If the clock synchronization conditions S1 and S2 hold for i, processors

p and q are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)
p
(T + �(i)

q p
)� c(i)

q
(T)j < � + �S:

Lemma 4: If the clock synchronization conditions S1 and S2 hold for i, processors

p; q; and r are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j < 2(�+ �S) + ��:

Lemma 5: If the clock synchronization condition S1 holds for i, processors p and

q are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j < � + 2�:

Figure 2.1: Statements of the Principal Lemmas used in The Proof

2.3. Proof that the Algorithm maintains Synchronization 17

2.3.2 The Proof in Detail

We now prove that the Interactive Convergence Clock Synchronization Algorithm

maintains the clock synchronization conditions S1 and S2. The proof closely follows
that of Lamport and Melliar-Smith [16, pages 64{66] (though we do separate the

two synchronization conditions and prove them individually as Theorems 1 and
2, respectively). In particular, our Lemmas 1{5 correspond exactly to (corrected

versions of) theirs. However, since we use Lemma 2 in the proof of Lemma 1, we
rearrange the order of presentation accordingly. We also introduce a Lemma 6 and a

Sublemma A that is used in its proof and also in the base case of the inductive proof
of condition S1. Lamport and Melliar-Smith subsumed both of these in the proof of

their main theorem. In addition, we distinguish several special cases for Lemma 2,
which we identify as Lemmas 2a{2d. (Lemma 2c is the one that corresponds most

closely to Lemma 2 in [16].) The reason for these additional lemmas is that the
single Lemma 2 of Lamport and Melliar-Smith is false: more restrictive hypotheses
are needed, and it is convenient to create specialized instances for the di�erent

circumstances of its application.

In the remainder of this section we state and prove the lemmas identi�ed above,

followed by the main theorems. First, however, we state some constraints on pa-
rameters that are employed in several of the proofs.

2.3.2.1 Constraints on Parameters

Our proofs are contingent on the parameters to

the Algorithm (n;m;R; S;�;�; �; �; �0 and �) satisfying certain constraints. We
could mention these constraints explicitly in the statements of the lemmas and of

the theorems, but that would be tedious and would clutter those statements need-
lessly. Accordingly we list and name here the six constraints that the parameters
are required to satisfy. Satisfaction of these constraints is assumed throughout the

proof.

The second and third constraints (i.e., C1 and C2) can be modi�ed (but not elim-

inated) if desired by suitably adjusting some of the proofs; we chose these particular
constraints for simplicity and because we felt that there would be no di�culty satis-

fying them in any likely implementation. The other �ve constraints are fundamental
to the operation and analysis of the Algorithm.

C0: m > n � 0

C1: R � 3S

C2: S � �

C3: � � � > 0

18 Traditional Mathematical Presentation

C4: � � � + � + �

2 S

C5: � � �0 + �R

C6: � � 2(�+ �S) +
2m�

n �m
+

n�R

n�m
+

n��

n�m
+ ��

The reader may wonder why we do not include the celebrated constraint 3m < n.
The reason is simply that this is a derived constraint, not a fundamental one. It

is easy to see (cf. (2.2) on page 9) that C4 and C6 can be satis�ed simultaneously
only if indeed 3m < n, but it is also quite possible for values of other parameters to

render C4 or C6 unsatis�able even if 3m < n.

2.3.2.2 The Lemmas

We derive Lamport and Melliar-Smith's Lemma 1 from Lemma 2|hence we begin

with Lemma 2.
Lemma 2: If processor p is nonfaulty through period i+ 1, and T and � are such

that A
(i)
p (T) and A

(i)
p (T+�) are both in the interval [A

(0)
p (T (0)); A

(i+1)
p (T (i+2))], then

jc(i)
p
(T + �)� [c(i)

p
(T) + �]j �

�

2
j�j:

Proof: Since p is nonfaulty through period i+ 1, we know by A1 that cp is a good

clock in the interval [A
(0)
p (T (0)); A

(i+1)
p (T (i+2))]. Then, by the de�nition of a good

clock, we have

j(cp(A
(i)
p
(T + �))� cp(A

(i)
p
(T)))� �j �

�

2
j�j;

from which the result follows by the identities c
(i)
p (T) = cp(A

(i)
p (T)), and c

(i)
p (T +

�) = cp(A
(i)
p (T +�)). 2

We are going to need some specializations of Lemma 2. The �rst will be used to

bound expressions of the form

jc(i)
p
(T +�+ �)� [c(i)

p
(T +�) + �]j

where T 2 S(i). Application of Lemma 2 in this case requires us to establish that

A
(i)
p (T +�) and A

(i)
p (T +�+�) are both in the interval [A

(0)
p (T (0)); A

(i+1)
p (T (i+2))].

In order to satisfy the lower bound A
(0)
p (T (0)) � A

(i)
p (T + �) in the case i = 0

and T = T (0) + R � S, it is clear that we should require j�j � R � S. To prove
that this condition su�ces for the case of general i and T is surprisingly tedious and

requires an induction on i.

2.3. Proof that the Algorithm maintains Synchronization 19

We have just established the base case; for the inductive step, we assume that

T 2 S(i) and j�j � R � S are su�cient to establish that A
(0)
p (T (0)) � A

(i)
p (T + �)

and we note that if T 0 2 S(i+1), then T 0 = T + R for some T 2 S(i). Thus

A(i+1)
p

(T 0 +�) = A(i+1)
p

(T + �+R)

= A(i)
p
(T + �+R+ C(i+1)

p
� C(i)

p
)

= A(i)
p
(T + �)+ R+ C(i+1)

p
� C(i)

p

� A(0)
p
(T (0)) +R+ C(i+1)

p
� C(i)

p

where the last line follows from the inductive hypothesis. In order to complete the
inductive step, we need to establish that

R+ C(i+1)
p

� C(i)
p
� 0:

This is an easy consequence of S2, C1 (which is used to derive S < R), and C2.

To satisfy the upper bound A
(i)
p (T + �) � A

(i+1)
p (T (i+2)) in the limiting case

T = T (i+1), we need to establish

T (i+1) +�+ C(i)
p
� T (i+2) + C(i+1)

p
:

Now T (i+2) = T (i+1) + R and S2 provides jC
(i+1)
p � C

(i)
p j < � so what we need is

� � R� �:

It is clear that this can be achieved if j�j � R � S (as before), and j�j � S. The

latter constraint is ensured by C2.
We have just sketched the proof of

Lemma 2a: If processor p is nonfaulty through period i + 1, T 2 S(i), j� + �j �
R� S, and j�j � R� S, then

jc(i)
p
(T +�+ �)� [c(i)

p
(T +�) + �]j �

�

2
j�j:

2

We will also require a variant of this result where the only bounds available on

� and � are j�j � S and j�j � S. It is easy to see that Lemma 2a can be applied,
provided 3S � R|which is the Constraint C1. This yields

Lemma 2b: If processor p is nonfaulty through period i+1, T 2 S(i), j�j � S, and

j�j � S, then

jc(i)
p
(T +�+ �)� [c(i)

p
(T +�) + �]j �

�

2
j�j:

2

The special case � = 0 provides

20 Traditional Mathematical Presentation

Lemma 2c: If processor p is nonfaulty through period i+1, T 2 S(i), and j�j � S,

then

jc(i)
p
(T + �)� [c(i)

p
(T) + �]j �

�

2
j�j:

2

The �nal variation on Lemma 2 is Lemma 2d. Unlike the other variations, this

lemma is not a specialization of Lemma 2, but is proved independently.

Lemma 2d: If processor p is nonfaulty through period i and 0 � � � R, then

jc(i)
p
(T (i) +�)� [c(i)

p
(T (i)) + �]j �

�

2
�:

Proof: By an inductive argument similar to that used for Lemma 2a, we can show

that A
(i)
p (T (i)+�) is in the interval [A

(0)
p (T (0)); A

(i)
p (T (i+1))]. The result then follows

from the de�nitions of nonfaulty and good clock similarly to Lemma 2. 2

Lemma 1: If the clock synchronization conditions S1 and S2 hold for i, and pro-

cessors p and q are nonfaulty through period i+ 1, then

j�(i)
q p
j < �:

Proof: By A2, we have

j�(i)
q p
j � S (2:5)

and

jc(i)
p
(T 0 + �(i)

q p
)� c(i)

q
(T 0)j < �

for some time T 0 in S(i). Using the arithmetic identity

x = (u� v) + (v � w)� (u� [w+ x])

we obtain

j�
(i)
q pj = j c

(i)
p (T 0 +�

(i)
q p)� c

(i)
q (T 0)

+ c
(i)
q (T 0)� c

(i)
p (T 0)

� (c
(i)
p (T 0 + �

(i)
q p)� [c

(i)
p (T 0) + �

(i)
q p])j:

Hence

j�
(i)
q pj � jc

(i)
p (T 0 +�

(i)
q p)� c

(i)
q (T 0)j

+ jc
(i)
q (T 0)� c

(i)
p (T 0)j

+ jc
(i)
p (T 0 + �

(i)
q p)� [c

(i)
p (T 0) + �

(i)
q p]j:

2.3. Proof that the Algorithm maintains Synchronization 21

The �rst term in the right hand side is the left hand side of the instance of A2

with which we began. Applying S1 and Lemma 2c to the second and third terms,
respectively, we obtain

j�(i)
q p
j < � + � +

�

2
�(i)
q p

from which the conclusion follows by (2.5) (which was also needed to justify appli-
cation of Lemma 2c) and C4. 2

Lemma 3: If the clock synchronization conditions S1 and S2 hold for i, processors

p and q are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)
p
(T + �(i)

q p
)� c(i)

q
(T)j < � + �S:

Proof: By A2, we have

j�(i)
q p
j � S (2:6)

and

jc(i)
p
(T 0 + �(i)

q p
)� c(i)

q
(T 0)j < �

for some time T 0 in S(i). Let � = T �T 0, so that T = T 0+�. Using the latter, plus

the arithmetic identity

x� y = (x� [u+ v]) + (u� w)� (y � [w+ v]);

we obtain:
jc(i)
p
(T + �(i)

q p
)� c(i)

q
(T)j =

j c
(i)
p (T 0 + �

(i)
q p + �)� [c

(i)
p (T 0 + �

(i)
q p) + �]

+ c
(i)
p (T 0 +�

(i)
q p)� c

(i)
q (T 0)

� (c
(i)
q (T 0 + �)� [c

(i)
q (T 0) + �])j:

Hence
jc(i)
p
(T + �(i)

q p
)� c(i)

q
(T)j �

jc
(i)
p (T 0 + �

(i)
q p +�)� [c

(i)
p (T 0 + �

(i)
q p) + �]j

+ jc
(i)
p (T 0 + �

(i)
q p)� c

(i)
q (T 0)j

+ jc
(i)
q (T 0 + �)� [c

(i)
q (T 0) + �]j:

Applying Lemma 2b to the �rst term on the right hand side (this is justi�ed by

(2.6) and the observation that j�j � S since T and T 0 are both in S(i)), recognizing
the second term as the left hand side of the instance of A2 with which we began,
and applying Lemma 2c to the third term, we obtain

jc(i)
p
(T + �(i)

q p
)� c(i)

q
(T)j <

�

2
j�j+ �+

�

2
j�j:

22 Traditional Mathematical Presentation

The result then follows from j�j � S. 2

Lemma 4: If the clock synchronization conditions S1 and S2 hold for i, processors

p; q; and r are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j < 2(�+ �S) + ��:

Proof: By Lemma 1, we know that j�
(i)
r pj < � and j�

(i)
r qj < �. Hence, by the

Algorithm, ��
(i)
r p = �

(i)
r p and ��

(i)
r q = �

(i)
r q and so

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j = jc(i)

p
(T) + �(i)

r p
� [c(i)

q
(T) + �(i)

r q
]j:

Using the arithmetic identity

x � y = (u� y)� (v � x) + (v � w)� (u� w)

we obtain
jc(i)
p
(T) + �(i)

r p
� [c(i)

q
(T) + �(i)

r q
]j =

j c
(i)
q (T + �

(i)
r q)� [c

(i)
q (T) + �

(i)
r q]

� (c
(i)
p (T +�

(i)
r p)� [c

(i)
p (T) + �

(i)
r p])

+ c
(i)
p (T +�

(i)
r p)� c

(i)
r (T)

� (c
(i)
q (T +�

(i)
r q)� c

(i)
r (T))j

and so
jc(i)
p
(T) + �(i)

r p
� [c(i)

q
(T) + �(i)

r q
]j �

jc
(i)
q (T +�

(i)
r q)� c

(i)
q (T) + �

(i)
r qj

+ jc
(i)
p (T +�

(i)
r p)� c

(i)
p (T) + �

(i)
r pj

+ jc
(i)
p (T +�

(i)
r p)� c

(i)
r (T)j

+ jc
(i)
q (T +�

(i)
r q)� c

(i)
r (T)j:

The result follows on applying Lemma 2d to the �rst two terms in the right hand
side (using C2 and C3 to provide � � S) and Lemma 3 to the remaining two. 2

Lemma 5: If the clock synchronization condition S1 holds for i, processors p and

q are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j < � + 2�:

2.3. Proof that the Algorithm maintains Synchronization 23

Proof: Using the arithmetic identity

(a+ x)� (b+ y) = (a� b) + (x� y);

we obtain

jc
(i)
p (T) + ��

(i)
r p � [c

(i)
q (T) + ��

(i)
r q]j = jc

(i)
p (T)� c

(i)
q (T) + ��

(i)
r p �

��
(i)
r qj

� jc
(i)
p (T)� c

(i)
q (T)j+ j ��

(i)
r pj+ j ��

(i)
r qj:

The result follows on applying S1 to the �rst term on the right hand side, and ob-
serving that the Algorithm ensures that the remaining two terms are no larger than
�. 2

Sublemma A: If processors p and q are nonfaulty through period i, and T 2 R(i),

then

jc(i)
p
(T)� c(i)

q
(T)j � jc(i)

p
(T (i))� c(i)

q
(T (i))j+ �R:

Proof: Letting � = T � T (i) (so that T = T (i)+� and 0 � � � R), and using the
arithmetic identity

x� y = (x� [u+ v]) + (u� w)� (y � [w + v])

we have
jc(i)
p
(T)� c(i)

q
(T)j =

j c
(i)
p (T (i) + �)� [c

(i)
p (T (i)) + �]

+ c
(i)
p (T (i))� c

(i)
q (T (i))

� (c
(i)
q (T (i) +�)� [c

(i)
q (T (i)) + �])j

and hence
jc(i)
p
(T)� c(i)

q
(T)j �

jc
(i)
p (T (i) + �)� [c

(i)
p (T (i)) + �]j

+ jc
(i)
p (T (i))� c

(i)
q (T (i))j

+ jc
(i)
q (T (i) + �)� [c

(i)
q (T (i)) + �]j:

The result then follows on applying Lemma 2c to the �rst and third terms on the
right hand side. 2

Lemma 6: If processors p and q are nonfaulty through period i+1, and T 2 R(i+1),

then

jc(i+1)
p

(T)� c(i+1)
q

(T)j � jc(i)
p
(T (i+1)) + �(i)

p
� [c(i)

q
(T (i+1)) + �(i)

q
]j+ �(R+�):

24 Traditional Mathematical Presentation

Proof: Using Sublemma A (for the case i+ 1 rather than i), we obtain

jc(i+1)
p

(T)� c(i+1)
q

(T)j � jc(i+1)
p

(T (i+1))� c(i+1)
q

(T (i+1))j+ �R:

By the Algorithm,

jc(i+1)
p

(T (i+1))� c(i+1)
q

(T (i+1))j = jc(i)
p
(T (i+1) + �(i)

p
)� c(i)

q
(T (i+1) +�(i)

q
)j:

Using the arithmetic identity

x� y = (x� [u+ v])� (y � [w+ z]) + (u+ v � [w + z])

we obtain
jc(i)
p
(T (i+1) + �(i)

p
)� c(i)

q
(T (i+1) +�(i)

q
)j =

j c
(i)
p (T (i+1) + �

(i)
p)� [c

(i)
p (T (i+1)) + �

(i)
p]

� (c
(i)
q (T (i+1) +�

(i)
q)� [c

(i)
q (T (i+1)) + �

(i)
q])

+ c
(i)
p (T (i+1)) + �

(i)
p � [c

(i)
q (T (i+1)) + �

(i)
q]j

and hence
jc(i)
p
(T (i+1) +�(i)

p
)� c(i)

q
(T (i+1) + �(i)

q
)j �

jc
(i)
p (T (i+1) + �

(i)
p)� [c

(i)
p (T (i+1)) + �

(i)
p]j

+ jc
(i)
q (T (i+1) + �

(i)
q)� [c

(i)
q (T (i+1)) + �

(i)
q]j

+ jc
(i)
p (T (i+1)) + �

(i)
p � [c

(i)
q (T (i+1)) + �

(i)
q]j

Applying Lemma 2c to the �rst two terms on the right hand side (which is justi�ed

because the Algorithm provides �
(i)
p = C

(i+1)
p � C

(i)
p , S2 then gives j�

(i)
p j < �, and

C2 gives � � S), we obtain

jc(i)
p
(T (i+1) + �(i)

p
)� c(i)

q
(T (i+1) +�(i)

q
)j �

jc(i)
p
(T (i+1)) + �(i)

p
� [c(i)

q
(T (i+1)) + �(i)

q
]j+ ��:

and the result follows. 2

2.3. Proof that the Algorithm maintains Synchronization 25

2.3.2.3 The Correctness Theorem

We divide the correctness theorem into two, and prove separately that the Algorithm
maintains S1 and S2.

Theorem 1: For all processors p and q, if all but at mostm processors are nonfaulty

through period i, then

S1: If p and q are nonfaulty through period i, then for all T in R(i)

jc(i)
p
(T)� c(i)

q
(T)j < �:

Proof: We use induction on i. The base case i = 0 follows from Sublemma A,
Assumption A0, and Constraint C5. For the inductive step, we assume the theorem

true for i, assume its hypotheses true for i+ 1, and consider jc
(i+1)
p (T)� c

(i+1)
q (T)j.

Lemma 6 then gives

jc(i+1)
p

(T)� c(i+1)
q

(T)j � jc(i)
p
(T (i+1)) + �(i)

p
� [c(i)

q
(T (i+1)) + �(i)

q
]j+ �(R+�):

By the Algorithm, the right hand side equals
�����
�
1

n

� nX
r=1

(c(i)
p
(T (i+1)) + ��(i)

r p
� [c(i)

q
(T (i+1)) + ��(i)

r q
])

�����+ �(R+�)

�

�
1

n

� nX
r=1

jc(i)
p
(T (i+1)) + ��(i)

r p
� [c(i)

q
(T (i+1)) + ��(i)

r q
]j+ �(R+ �)

�

�
1

n

�
[(n�m)(2[�+ �S] + ��)+m(� + 2�)] + �(R+�)

where the �rst term is obtained by applying Lemma 4 to the n�m nonfaulty pro-
cessors, and the second is obtained by applying Lemma 5 to the m faulty ones. The

result then follows from the Constraint C6. 2

Theorem 2: For all processors p, if all but at most m processors are nonfaulty

through period i, and processor p is nonfaulty through period i, then

S2: jC
(i+1)
p � C

(i)
p j < �:

Proof: The Algorithm de�nes

C(i+1)
p

= C(i)
p

+�(i)
p

and �
(i)
p is the average of n terms, each less than �. The result follows. 2

Chapter 3

Comparison with the Published

Analysis by Lamport and

Melliar-Smith

In this chapter we describe the di�erences between our analysis and that of Lamport

and Melliar-Smith, and we describe and discuss the aws in their presentation.

Our proof of the correctness of the Interactive Convergence Clock Synchroniza-
tion Algorithm, which was presented in the previous chapter, follows the original

proof of Lamport and Melliar-Smith [16] very closely; our only changes are technical
ones. Some of these were motivated by the needs of truly formal speci�cation and

veri�cation; others were motivated by the need to correct aws in the original. We
begin with changes in the �rst class, then describe the aws we discovered in the

published proof.

3.1 The De�nition of a Good Clock

Lamport and Melliar-Smith de�ne the notion of a good clock relative to a real time

interval as follows:

A clock c is a good clock during the real time interval [t1; t2] if it is a

monotonic, di�erentiable function on [T1; T2], where Ti = c�1(ti); i =
1; 2, and for all T in [T1; T2]:

���� dcdT (T)� 1

���� < �

2
:

This de�nition obviously presents a considerable challenge for a completely formal

speci�cation|it would require axiomatizing a fragment of the di�erential calculus.

26

3.2. Explicit Functional Dependencies 27

Accordingly, we follow Butler [5] and use the Mean-Value Theorem to provide a

more tractable de�nition:
����c(T1)� c(T2)

T1 � T2
� 1

���� < �

2
:

This formulation avoids the use of derivatives, but still requires use of the inverse

clock function in order to de�ne T1 and T2. This can be avoided by de�ning the
notion of a good clock relative to a clock time interval:

A clock c is a good clock during the clock time interval [T0; TN] if

����c(T1)� c(T2)

T1 � T2
� 1

���� < �

2

whenever T1 and T2 (T1 6= T2) are clock times in [T0; TN].

The formulation we employ for the notion of a good clock is this last one, except

that we rewrite the constraint as

jc(T1)� c(T2)� (T1 � T2)j �
�

2
jT1 � T2j (3:1)

in order to avoid the use of division and the obligation to ensure T1 6= T2.

Notice also that although we do not now explicitly require a good clock to be
monotonic, it follows implicitly as a corollary to our de�nition that, since � is small,

the clock function c is strict monotonic increasing (and therefore has an inverse
function). This fact is proved as Theorem monotonicity in Module clocks.

In the original version of the veri�cation and report, we used < rather than
� in de�nition (3.1). Bill Young pointed out that this has the e�ect of excluding

systems with perfect clocks (i.e., those with � = 0). The consequences of the changed
de�nition are that � replaces all the formerly strict inequalities in Lemmas 2, 2a{2d,

Sublemma A, and Lemma 6.

A more important defect of the original de�nition is that it is unsatis�able in the
case T1 = T2. This causes the entire veri�cation to be predicated on an unsatis�able

assumption and thereby rendered the original veri�cation potentially specious. This
is discussed further on page 61.

3.2 Explicit Functional Dependencies

We made the functional dependency on i, the synchronization period, explicit in
the three subscripted � quantities that appear in the Algorithm: where Lamport

and Melliar-Smith use �p;�q p and ��q p, we use �
(i)
p ;�

(i)
q p and ��

(i)
q p. Thus, �

(i)
q p is

the di�erence between q's clock and p's observed by p during the i'th period. This

28 Comparison with Analysis of Lamport and Melliar-Smith

change is a technical correction necessitated by our use of a strict formalism. An

alternative in the case of �q p would have been to include it in the scope of the exis-
tential quanti�cation in A2 (Skolemization would then have provided the functional
dependence on i), but that would have needlessly complicated the technical details

of the argument.

Throughout the rest of this Chapter, we use the notation of Lamport and Melliar-

Smith (i.e., no superscripts on the � functions) whenever we are discussing their
proof.

3.3 Approximations and Neglect of Small Quantities

In order to \simplify the calculations" Lamport and Melliar-Smith make approxi-
mations based on the assumption that n� � 1. They neglect quantities of order
n�� and n�2 [16, Section 3.4] and use the notation x � y to indicate approximate

equality and x <
� y to indicate approximate inequality. (x <

� y means x < y0 for
some y0 � y.)

When we �rst attempted to formalize the proof of Lamport and Melliar-Smith,

we followed their example and used approximations. However, we soon discovered
that this required use of some unjusti�able axioms; referring to the published proof,

we found the corresponding steps to be incorrect there also. One of these steps is in
the main induction (invalidating the whole proof), another is in Lemma 4. These

are described below.

3.3.1 A Flaw in the Main Induction

The goal of the main induction is to establish the clock synchronization condition

S1. This is stated [16, page 63] as

jc(i)
p
(T)� c(i)

q
(T)j < �

while the inductive step [16, page 66] establishes

jc(i+1)
p

(T 0)� c(i+1)
q

(T 0)j <
�
�:

Thus, the inductive step establishes the desired result only under the unacceptable
hypothesis that x <

�
y � x < y. Of course, this immediate di�culty can be remedied

by restating S1 as

jc(i)
p
(T)� c(i)

q
(T)j <

�
�

but one would then have to reexamine the whole proof in order to be sure that the

inductive step and all its lemmas remain true under this weaker premise. 2

3.3. Approximations and Neglect of Small Quantities 29

3.3.2 A Flaw in Lemma 4

Lamport and Melliar-Smith's version of Lemma 1 [16, page 64] establishes, under
suitable hypotheses, that j�q pj <� �+ �. However, their proof of Lemma 4 [16, page

65] requires j�q pj < � + �, which is not substantiated by these premises. 2
The two examples cited above are de�nite aws|the proofs are incorrect as

stated. In repairing these aws we faced a choice: we could either continue to work
with the approximations|attempting to get them right|or we could reexamine

the whole use of approximations and investigate whether the proof could be carried
through with exact inequalities. We chose the latter course. Our motivation was

largely aesthetic|we found the use of approximations, and especially the potential
appearance of approximate bounds in the statement of the main theorem, to be
very unsatisfying. The use of approximate relations also cluttered the mechanical

veri�cation|unlike exact arithmetic relations, whose interpretations are built into
our speci�cation language and theorem prover, the approximate relations had to be

explicitly axiomatized and, more tediously, cited wherever they were needed. We
had also come to doubt Lamport and Melliar-Smith's belief that the use of approx-

imations simpli�ed the unmechanized calculations|on the contrary, we found that
the need to assure ourselves of the correctness of the unfamiliar approximations was

a major complicating factor in understanding their published proof.
Accordingly, we revised the published proof, adding additional terms where nec-

essary so that exact equalities and inequalities could be used. This proved to be quite
straightforward and, to us at least, the resulting proof (presented in the previous
chapter) is no more complicated than that published by Lamport and Melliar-Smith,

and the use of exact bounds is more satisfying. The revisions necessitated by the
use of exact inequalities are few and are listed below. Notice that in a couple of

cases, the changes are simpli�cations.

Constraint C5 is changed from

� >� �0 + �R

to
� � �0 + �R:

Constraint C4 is changed from
� � � + �

to
� � � + �+

�

2
S:

Constraint C6 is formulated as follows by Butler et al. [6]:

� � 2(�+ �S) +
2m�

n�m
+

n�R

n �m
:

30 Comparison with Analysis of Lamport and Melliar-Smith

Lamport and Melliar-Smith use � � �+ � to eliminate � and state the bound

as

� >
�
n0(2�+ � (R+ 2S0));

where

n0 =
n

n � 3m
; and

S0 =
n �m

n
S

We prefer Butler's form and state the revised constraint as

� � 2(�+ �S) +
2m�

n �m
+

n�R

n�m
+

n��

n�m
+ ��:

Lemma 1: The conclusion is changed from

j�q pj <� � + �

to

j�(i)
q p
j < �

Lemma 4: The conclusion is changed from

jc(i)
p
(T) + ��r p � [c(i)

q
(T) + ��r q]j <� 2(�+ �S)

to

jc(i)
p
(T) + ��(i)

r p
� [c(i)

q
(T) + ��(i)

r q
]j < 2(�+ �S) + ��:

3.4 The Interval in which a Clock is a \Good Clock"

Several lemmas use De�nition 1 (the notion of a good clock) and Assumption A1
(a nonfaulty processor has a good clock) to establish bounds on certain quantities.
In order to apply these de�nitions, we must establish that the times concerned

fall in the interval during which the processor is hypothesized to be nonfaulty. The
statements and proofs of Lemmas 1 and 2 [16, page 64] do not do this with su�cient

care and both are false as stated.

3.4.1 Falsehood of Lemma 1

Lamport and Melliar-Smith's proof of Lemma 1 readily establishes

jc(i)
p
(T0)� c(i)

p
(T0 +�q p)j < � + �

3.4. The Interval in which a Clock is a \Good Clock" 31

where T0 2 S(i). The next step is to use the fact that p is nonfaulty up to T (i+1) to

allow use of De�nition 1. In order to be able to do this, it is necessary to show that

T0 +�q p � T (i+1):

This constraint is not true in general|T0 could be as large as T (i+1) and �q p � 0.
However, Lemma 1 is only used when p is known to be nonfaulty up to T (i+2) so
a plausible repair would change the statement of the Lemma to require that p be

nonfaulty up to T (i+2). Then we would merely need to show that

T0 +�q p � T (i+2): (3:2)

Since T0 � T (i+1) and T (i+2) = T (i+1) +R and �q p is small, this seems straightfor-
ward. However, although �q p is assumed small, and the purpose of this very Lemma

is to show it is less than �, there is no a priori bound on its value and therefore no
basis to establish (3.2).1 Hence, this putative proof of even the repaired version of

Lemma 1 is awed. In our proof, we introduce

�(i)
q p
� S

as an explicit conjunct in Assumption A2. This is su�cient to substantiate our use
of De�nition 1.

Notice that satisfaction of this strengthened statement for Assumption A2 must

be justi�ed for any realization of the Algorithm.

3.4.2 Falsehood of Lemma 2

There is a similar problem in the proof of Lemma 2. In order to substantiate the
use of Assumption A1, it is necessary to ensure that

A(i)
p
(T + �) � A(i+1)

p
(T (i+2))

where T 2 S(i) and j�j < R. Expanding de�nitions, this requires

T (i+1)
� �+�+ C(i)

p
� T (i+1) + R+ C(i+1)

p

1It might seem that we could establish that �q p must be very small by using the facts the p

and q were synchronized during the previous period and cannot have drifted very far since then.

This argument, however, merely shows that a suitably small �q p must exist|it does not guarantee

that this will be the value that is actually obtained. It is possible that a very large value will be
returned for �q p and that the constraint

jc(i)p (T 0 +�q p)� c
(i)
q (T 0)j < �

will be satis�ed adventitiously because the large value for �q p takes p's clock beyond the interval

in which it is a good clock|so that c
(i)
p (T 0 + �q p) may have any value whatever, including one

close to c
(i)
p (T 0).

32 Comparison with Analysis of Lamport and Melliar-Smith

where 0 � � � S. For the case where � = 0;� � 0, and using S2, this reduces to

� � R� �

which is not ensured by the condition j�j < R. Similar di�culty arises in satisfying
the lower bound to the interval required for application of A1.

In our proof we introduce several variations on Lemma 2, each with tighter

bounds on � and/or T , and we also introduce the new constraints C1 (3S � R)
and C2 (� � S) in order to overcome these di�culties. These particular constraints

were chosen for simplicity, and because we felt that there would be no di�culty
satisfying them in any likely implementation. Alternative constraints are feasible,

and would require minor modi�cations to the proof.

3.5 Sundry Minor Flaws and Di�culties

3.5.1 Falsehood and Unnecessary Generality of Lemma 3

As stated, the Lemma is false because the bounds on � are insu�ciently tight to

substantiate use of Assumption A1 (the argument is exactly the same as that for
Lemma 2). However, � is instantiated with 0 the only time that the Lemma is used

(in Lemma 4). In our proof, we discarded the parameter �, thereby correcting and
simplifying the statement and proof of the Lemma.

3.5.2 Missing Requirements for Clock Synchronization Condition

S2

The proofs of Lemmas 1 and 3 use Assumption A2, which requires that S2 should

hold. Since Lemma 4 uses Lemmas 1 and 3, its statement should also require that
S2 hold. The statements of all three Lemmas omit this condition.

As stated, Lemma 2 also requires that only S1 hold. When other necessary

corrections to the statement and proof of the Lemma are made, it becomes necessary
to require that S2 hold as well (in order to bound the extent to which the interval

[T (i+1); T (i+2)] can \shrink" when the correction C
(i+1)
p is applied).

3.5.3 Typographical Errors in Lemmas 2 and 4

The conclusion to the �rst part of Lemma 2 states that a certain quantity is strictly
less than

�
�

2

�
�. This should be

�
�

2

�
j�j.

The conclusion to Lemma 4 is stated as

jc(i)
p
(T) + ��r p � [c(i)

q
(T)� ��r q]j < 2(�+ �S):

3.5. Sundry Minor Flaws and Di�culties 33

It should read

jc(i)
p
(T) + ��r p � [c(i)

q
(T) + ��r q]j < 2(�+ �S):

These seem to be no more than typographical errors.

Chapter 4

Formal Speci�cation and

Veri�cation in EHDM

In this chapter we describe the formal speci�cation of the Interactive Convergence
Clock Synchronization Algorithm and its mechanical veri�cation using the Ehdm

formal speci�cation and veri�cation environment. This entails encoding the Algo-
rithm and its supporting de�nitions, assumptions, constraints, lemmas, and theo-

rems in the speci�cation language of Ehdm, and then proving those lemmas and
theorems with the help of the Ehdm theorem prover.

We begin with an overview of those features of Ehdm and its speci�cation lan-
guage that are necessary for an understanding of this particular application, then

we describe our application of Ehdm to the Interactive Convergence Clock Synchro-
nization Algorithm.

4.1 Overview of EHDM

Ehdm is an interactive system for the composition and analysis of formal speci-
�cations and abstract programs written in the Ehdm speci�cation language [24].

The speci�cation and veri�cation described here was performed on a Sun worksta-
tion using Ehdm Version 5.2.0.1 Other substantial veri�cations of fault-tolerance

properties that have been undertaken in Ehdm are described in [23, 27].
Our speci�cation and veri�cation of the Interactive Convergence Clock Synchro-

nization Algorithm uses only some of the capabilities of Ehdm. Speci�cally, it uses
the functional component of the speci�cation language, the ground prover, and the
proof-chain analyzer.2

1A complete reimplementation, Ehdm Version 6, is now in alpha test.
2Capabilities not used here include hierarchical mappings, the procedural component of the

speci�cation language, the instantiator for the theorem prover, the Hoare-Sentence prover, the Ada

Translator, and the multilevel security analyzer.

34

Overview of EHDM 35

4.1.1 The Speci�cation Language

The fragment of the Ehdm speci�cation language used here is a strongly typed ver-
sion of the First-Order Predicate Calculus, enriched with elements of other logics|

speci�cally Higher-Order Logic and the Lambda Calculus. The two volumes by
Manna and Waldinger [19, 20] provide an introduction to some of these topics that
is especially suitable for computer scientists; Andrews [1] gives a more detailed

treatment, including a good discussion of Higher-Order Logic.

4.1.1.1 Declarations

The Ehdm speci�cation language allows the declaration of �ve di�erent sorts of
entities: types, constants, variables, formulas, and proofs. There are several built-in

types in Ehdm (that is, types which for which the system provides an interpretation).
Those of interest here are the rational numbers (indicated by the identi�er number),

the integers (indicated by the identi�ers integer or int), the natural numbers
(indicated by the identi�ers naturalnumber or nat), the booleans (indicated by the
identi�ers boolean or bool), and the function types (which are described shortly).

In addition, the user may introduce record and enumeration types, uninterpreted
types, type synonyms, and subtypes. Here, we use only the built-in and function

types, synonyms, and subtypes.

The declaration

clocktime: TYPE IS number

introduces clocktime3 as a synonym for the rational numbers (equivalently, we

can think of the rational numbers as supplying the interpretation for the type
clocktime).

Subtypes of previously de�ned or built-in types can be introduced and may be
associated with a predicate. The natural numbers are provided as a subtype of the

integers associated with the predicate (�x : x � 0) using the (built-in) declaration

nat: TYPE FROM int WITH (LAMBDA x: x >= 0)

Variables are introduced by declarations of the form

T1, T2: VAR clocktime

while uninterpreted constants are introduced by declarations of the form

T_ZERO: clocktime

3
Ehdm identi�ers consist of a letter, followed by a sequence of letters, digits, and the underscore

character. Identi�ers are case sensitive: t1 and T2 are di�erent identi�ers. The keywords of Ehdm

are not case sensitive, however: type, TYPE, and even tYpE all denote the same keyword. By

convention we put keywords in upper case. (This is the default used by the Ehdm prettyprinter.)

36 Speci�cation and Veri�cation in EHDM

Constants of a built-in type can be given an interpretation using a literal value of

that type, for example:

T_ZERO: clocktime = 0

Function types are written as follows:

X: TYPE IS function[processor, period, clocktime -> realtime]

where the type-identi�ers preceding the -> indicate the domain of the function type,

and that following indicates the range.

Ehdm is a higher-order language, so that function types may have other function
types in their domain or range, for example

foo: TYPE IS function[nat, nat, function[nat -> number] -> number]

Functions are simply constants of a function type:

correction: function[processor, period -> clocktime]

There is no special notation for predicates; a predicate is simply a function with
range bool:

goodclock: function[processor, clocktime, clocktime -> bool]

It is also perfectly feasible to have variables of a function type:

prop: VAR function[nat -> bool]

Literal values of a function type are denoted using lambda-notation, and may be
used to give an interpretation to a function constant. The following speci�cation

fragment gives an example.

p: VAR processor

i: VAR period

T: VAR clocktime

adjusted: function[processor, period, clocktime -> clocktime] =

(LAMBDA p, i, T -> clocktime: T + correction(p, i))

Constant declarations may use = or ==; the latter indicates that the de�nition is to be
expanded in place wherever it appears (like a macro), whereas the former indicates

that the de�nition should only be expanded on command. Recursive de�nitions are
allowed (in declarations using =), but must be provided with ameasure function that
is used to ensure termination. This is explained in more detail in Section 4.2.1.8.

Formula declarations have the following schema:

name: KEYWORD value

Overview of EHDM 37

where the name is simply an identi�er that is used to refer to the formula, KEY-

WORD is one of the keywords AXIOM, LEMMA, THEOREM, or several other synonyms,4

and value is boolean-valued expression.
Expressions can be built up from the usual propositional connectives (which are

written as NOT, AND, OR, IMPLIES, and IFF), universal and existential quanti�ca-
tion, function application (written in the usual pre�x notation|e.g., adjusted(p,

i, T)), equality (written as =),5 disequality (written as /=), the usual arithmetic
operations (written as -, +, * and /), and the relations of arithmetic inequality

(written as <, <=, >, and >=). There is also a three-place if-then-else operator that
is written, for example, as:

abs_def: AXIOM abs(x) = IF x < 0 THEN -x ELSE x END IF

Quanti�ed expressions are written in the following form:

monotonicity: THEOREM

(EXISTS T0, TN :

goodclock(p, T0, TN)

AND T0 <= T1 AND T0 <= T2 AND T1 <= TN AND T2 <= TN)

IMPLIES (T1 > T2 IMPLIES clock(p, T1) >= clock(p, T2))

Free variables in Ehdm formulas are treated as if they are universally quanti�ed at

the outermost level (i.e., formulas denote their universal closure). Thus, T1, T2 and
p are implicitly universally quanti�ed in the formula monotonicity show above. It

is generally easier to read formulas when this outer level of quanti�cation is omitted.
Ehdm permits overloading of function names and provides subtype-to-supertype

coercions. This is of some importance when dealing with arithmetic. As noted, the

naturals are de�ned as a subtype of the integers, which in turn are de�ned as a
subtype of the (rational) numbers. The binary arithmetic functions and relations

require both their arguments to be of the same type; the function and relation
symbols actually denote di�erent functions according to the type of their arguments.

If an arithmetic function or relation is supplied with arguments of di�erent types,
then a subtype-to-supertype coercion is applied until the types match. Thus, in

formula X of the following fragment

n: VAR nat

i: VAR int

r: VAR number

X: FORMULA r = i + n

4The Proof-Chain Analyzer (see Section 4.1.1.4) distinguishes AXIOM from the other keywords:

AXIOMS are not expected to be proved, but all non-AXIOMs are ultimately required to be consequences

only of AXIOMs and completed PROOFs. The keywords other than AXIOM are all synonymous with
each other and may be used to suggest the role of the corresponding formula.

5The symbol = denotes logical equivalence when its arguments are of type boolean|it is a

synonym for IFF in this case.

38 Speci�cation and Veri�cation in EHDM

it is addition on the integers that is supplied as the interpretation of the + sign (n

is coerced to integer), the result is coerced to a (rational) number, and the equality
function used is that for the (rational) numbers.

In addition to the subtype-to-supertype coercion, a supertype-to-subtype coer-

cion is also provided. For example, notice that the constraint C6 involves several
division operations, with divisor n-m. An Ehdm term such as x / (n - m) where x

is a number and m and n are naturals is interpreted as follows. First, since there is
no subtraction operation de�ned on the naturals, m and n are promoted to integers

(a supertype of naturals), and n - m is interpreted as integer subtraction, yielding
an integer result. Then, since functions are total in Ehdm, we need to ensure that

the division x / (n - m) is well-de�ned|i.e., that n - m is nonzero. The signature
of the division operator is de�ned as follows

x: VAR number

nonzeronum: TYPE FROM number WITH (LAMBDA x: x /= 0)

/: function[number, nonzeronum -> number]

In the example, we are supplying an integer as the second argument to the division
operator, which requires a nonzero number in this position. The numbers (rationals)

are a common supertype to both the integers and the nonzero numbers, so n - m

can be promoted to a number, and then reduced to the nonzero number required for

type-correctness if we can prove the theorem (n - m) /= 0 (which follows obviously
from the constraint C0).

Theorems such as this are called Type Consistency Conditions , or TCCs, and

are generated automatically by the Ehdm typechecker in order to establish the
type-correctness of supertype to subtype coercions, the nonemptiness of subtypes,

and the termination of recursive function de�nitions. All type correctness conditions
generated during the typechecking of a module are collected and written as formulas

in a system-generated module, called a TCC module. The TCCs are necessary
and su�cient to ensure type correctness of their parent module; the speci�cation

is incomplete until they have been proved. The requirement to prove all TCC
formulas is enforced by the Proof-Chain Analyzer (see Section 4.1.1.4). Trivial proof

declarations are generated automatically for each TCC in a TCC module. Often,
these su�ce to prove the TCC formulas; when they do not, users may attempt to
prove the formulas concerned in the same way they would attack proofs of ordinary

lemmas.6

4.1.1.2 Modules

Speci�cations in Ehdm are structured into named units called modules in much the
same way as programs written in modern programming languages are composed of

6In Ehdm Version 6, TCCs are added to the parent module. Those that can be proved trivially

are suppressed.

Overview of EHDM 39

similar units (e.g., packages in Ada). A module serves to group related concepts

together and delimits the scope of names. An (unparameterized) Ehdm module
consists of three parts, any of which may be empty: an import/export part, a
theory part, and a proof part.

Declarations of all the forms described above may appear in both the theory
and proof parts (except that AXIOMs may not appear in a proof part). Types and

constants declared in the theory part may be made visible to the theory parts of
other modules by listing them in the exporting part|for example:

EXPORTING R, in_R_interval

Other modules gain access to these names by citing the name of the module in which
they are declared in their USING clauses (as the import list is called in Ehdm). A
module A which imports a module B may re-export all the names imported from B

by adding a WITH clause to its own exporting list:

USING A

EXPORTING p, q, r WITH A

This makes all the names exported by A visible to any module that imports B,
without that module having to import A explicitly.

Modules may be parameterized by types and constants; an ASSUMING clause may
be supplied in order to state semantic constraints on actual parameters that may

be supplied. For example, the declaration

mod: MODULE [a, b: nat]

ASSUMING

ordered: FORMULA a < b

speci�es that in any instantiation of the module mod, the value of the �rst actual
parameter must be strictly less than that of the second. Formulas stated in ASSUMING

clauses may be treated as axioms within the module, but generate proof obligations
whenever the module is instantiated. These obligations are enforced by the Proof-

Chain Analyzer (Section 4.1.1.4).
The reader should now have enough understanding of the speci�cation language

of Ehdm to be able to read the simple module example, which is a simpli�ed form
of the module clocks used in the actual speci�cation of the Interactive Convergence
Clock Synchronization Algorithm. The module is shown in Figure 4.1 on page 40.

4.1.1.3 Proofs

Ehdm proof declarations provide information that tells the Ehdm theorem prover
how to prove the formula concerned. There are two main theorem proving com-

ponents in Ehdm: the ground prover , and the proof instantiator . All the proofs
described here were done with the ground prover alone.

A proof declaration in Ehdm has the general form

40 Speci�cation and Veri�cation in EHDM

example: MODULE

USING time

EXPORTING proc, clock, rho, goodclock

WITH time

THEORY

proc: TYPE IS nat

p: VAR proc

clock: function[proc, clocktime -> realtime]

T, T0, T1, T2, TN: VAR clocktime

rho: fraction

rho_pos: LEMMA half(rho) >= 0

rho_small: LEMMA half(rho) < 1

goodclock: function[proc, clocktime, clocktime -> bool] =

(LAMBDA p, T0, TN :

(FORALL T1, T2 :

T0 <= T1 AND T0 <= T2 AND T1 <= TN AND T2 <= TN

IMPLIES abs(clock(p, T1) - clock(p, T2) - (T1 - T2))

<= half(rho) * abs(T1 - T2)))

PROOF

rho_pos_proof: PROVE rho_pos FROM fraction_invariantfr <- rhog

rho_small_proof: PROVE rho_small FROM fraction_invariantfr <- rhog

END example

Figure 4.1: An Example Ehdm Speci�cation Module

Overview of EHDM 41

name: PROVE conclusion FROM premise1, premise2, premise3

where the conclusion and the premises (there can be any number of premises) are
the names of formulas. (The names of constants de�ned using a single = symbol

can also appear as premises.) This declaration indicates that the conclusion is
to be proven to be a valid consequence of the premises|i.e., p1; p2; p3 ` c in the

conventional notation of logic. By the deduction theorem, this is equivalent to
` p1; p2; p3 � c, which is equivalent to the unsatis�ability of

:c ^ p1 ^ p2 ^ p3 (4:1)

The Ehdm ground prover is a refutation-based prover; its strategy is to attempt
to show that (4.1) (i.e., the conjunction of the premises and the negated conclu-
sion) is unsatis�able. The �rst step on the way to accomplishing this goal is to

reduce (4.1) to an equivalent quanti�er-free form by the process of Skolemization.
The details of Skolemization are somewhat tedious to describe (see [20] for a general

explanation or [7, Chapter 5] as it applies to Ehdm), but the important point is that
the existentially quanti�ed variables in the premises, and the universally quanti�ed

and unquanti�ed variables in the conclusion, are replaced by constants.7

If the remaining variables in the quanti�er-free formula resulting from Skolem-

ization are substituted with expressions made up of constants (such expressions are
called ground terms), then (ignoring arithmetic for the moment) the result will be a

formula of the Propositional Calculus. Since Propositional Calculus is decidable, it
can be readily determined whether this formula (which is called a ground instance
of the original predicate calculus formula (4.1)) is unsatis�able. If it is, then so

is (4.1)|which means the original theorem has been proven. If the ground instance
is not unsatis�able, it does not mean that (4.1) is unsatis�able, nor that the origi-

nal theorem is false|it means only that the particular set of ground substitutions
chosen did not establish the theorem. However, by the Herbrand-Skolem-G�odel the-

orem, we know that if the original theorem is valid, then there exists some set of
substitutions that produces an unsatis�able ground instance.

The ground prover of Ehdm is simply a decision procedure for the combina-
tion of propositional calculus with equality over uninterpreted function symbols,

plus \extended quanti�er-free Presburger arithmetic8 for both the rationals and
integers" [28]. Proof declarations for the Ehdm ground prover must indicate the
substitutions to be used to produce the ground instance that is submitted to the

ground prover. Substitutions are indicated as follows:

7This description ignores the e�ects of explicit and implicit negations (the latter are introduced

by implications and equivalences). More precisely, it is the odd variables in the premises and the

even ones in the conclusion that are replaced by constants|and those constants may be functions
in the general case.

8This includes unary minus, addition and subtraction, multiplication and division by constants,

equality and disequality, together with the relations <;�;�, and >.

42 Speci�cation and Veri�cation in EHDM

name fv1 <- e1, v2 <- e2, ... , vn <- eng

where name is a formula name appearing in a PROVE declaration as either the conclu-

sion or a premise, the vi's are substitutable (unSkolemized) variables of the formula,
and the ei's are ground terms. For example:

abs_proof0: PROVE abs_ax0 FROM abs fa <- 0g

Not all substitutions involve literal constants; most refer to the Skolem or substi-
tution instances of variables in other premises or in the conclusion. The notation

for this appends an \@" sign and a quali�er to the variable concerned. Thus the
substitution x <- y@c means \substitute for x whatever is substituted for y in the
conclusion," and x <- y@p3 means \substitute for x whatever is substituted for y

in the 3'rd premise." More complex forms, such as x <- y@c+z@p3 are perfectly
acceptable. When function variables are concerned, the substitutions may involve

LAMBDA terms.
The number of substitutions that must be given explicitly is greatly reduced by

application of a number of default rules. If no quali�er is given (as in the substitution
x <- y), then y is interpreted to mean \the instance of y in the conclusion, if there

is one, otherwise the instance from this premise." If no substitution at all is given
for a variable, then (for the case of a variable x) the substitution x <- x is supplied

automatically (and the interpretation of the missing quali�er will be supplied by the
previous rule).

This all sounds much more complicated than it really is. A typical proof (from

the module time in the speci�cation) is shown below:

inRS_proof: PROVE inRS FROM

in_S_interval, in_R_interval fPI <- R - S + PI@p1g, SinR

The mechanics of doing a proof in Ehdm are that the user moves the cursor to

the proof declaration of interest and presses the \prove" button. (The interface to
Ehdm is a screen editor with mouse-sensitive pop-up menus.) In the fullness of time,

the system will report either \proved" (meaning just that) or \unproved" (meaning
either that the theorem is false, or that it is true, but the premises and substitutions
provided are not su�cient to establish that fact). There is no direct interaction with

the ground prover; all the interaction is through the speci�cation text. In addition
to the commands for performing a single proof, there are commands for doing all

the proofs in a module, or all the proofs in a module and all those modules that it
uses.

It will be clear from our description that the ground prover of Ehdm is simply a
sophisticated proof checker: all the creative work is in the selection of the premises

and of the substitutions|and this is performed by the user. Ehdm contains another
theorem proving component called the instantiator that can perform some of these

tasks automatically. Speci�cally, the instantiator tries to supply the substitutions

Overview of EHDM 43

needed to make a proof succeed. If it �nds the correct substitutions, it can write

them back into the speci�cation text so that in future the ground prover will be
able to perform the proofs on its own.

The instantiator is a full �rst-order theorem prover: it can prove any true the-
orem of �rst-order predicate calculus. However, its e�ectiveness in �nding suitable
substitutions is considerably diminished in the presence of interpreted symbols, such

as those for equality and arithmetic. Since the speci�cations of the Interactive Con-
vergence Clock Synchronization Algorithm make heavy use of arithmetic, we did not

use the instantiator in this e�ort. It was the powerful arithmetic capabilities of the
Ehdm ground prover that were crucial to our ability to perform this veri�cation.9

4.1.1.4 Other Components of the EHDM System used in the Proof

Proof-Chain Analyzer. The notion of \proof" that is established by the Ehdm
theorem prover is a local one: it assures us that the conclusion is indeed a valid

consequence of the premises. But it does not tell us whether those premises are
axioms or theorems, and if the latter, whether or not they have been proved. Nor

does it tell us whether module assumptions have been discharged and all TCC
formulas proven. This larger scale analysis is performed by an Ehdm tool called the

\Proof-Chain Analyzer." The Proof-Chain Analyzer can be invoked with either a
PROVE or a FORMULA declaration as its target. In the latter case, it �rst searches for a
proof of the formula concerned; in either case it then recursively examines the status

of all the premises named in the proof. The output of proof-chain analysis includes
an enumeration of all the axioms, de�nitions, and proved intermediate formulas on

which a given proof or theorem ultimately depends. Proof-Chain analyses for the
clock synchronization conditions in our speci�cation are given in Appendix B.

Prettyprinters. The written appearance of speci�cations has a signi�cant impact

on the ease with which they can be read, understood|and written. The concrete
syntax of the Ehdm speci�cation language attempts to be close to traditional math-
ematical and logical notation. A rather sophisticated prettyprinter helps ensure a

uniform lexical style for speci�cations. The speci�cation listings in Appendix D
were produced by the prettyprinter.

Even given the relatively straightforward concrete syntax of Ehdm, it can still be
hard to read speci�cations composed of long series of function applications. Thus,

Ehdm includes a table-driven \LaTEX-printer" that converts Ehdm speci�cations
into LaTEX input which can then be processed by LaTEX [17] to produce very read-

9The successful completion of this and other hard veri�cations attest to the power of the Ehdm
theorem prover; it is, however, undeniably hard to use. Ehdm Version 6 will include an interactive

proof-construction facility that should ease the development of proofs. We have also developed a

fully interactive theorem prover for experimental purposes.

44 Speci�cation and Veri�cation in EHDM

able speci�cations, with two-dimensional layout including sub- and superscripts and

\mix-�x" function symbols. For example, a functional expression in Ehdm

abs(c(p, i, T) - c(q, i, T))

can be converted to the more comprehensible notation

jc(i)
p
(T)� c(i)

q
(T)j:

In our LaTEX-printed speci�cations, we adopt the convention that when an unin-

terpreted function name appears alone (for example, in a declaration), it is printed

as a template indicating argument positions. Thus, for example, �
(?3)
?1;?2 makes it

clear that the �rst argument will appear as a subscript, the second as a parenthe-

sized superscript, and the third in normal parentheses. When a function is given
an interpretation, we replace the ?i's with the corresponding bound variables from

its de�nition|for example, ��
(i)
r p. The LaTEX-printed version of the example from

Figure 4.1 is shown in Figure 4.2 on page 45.
We used the LaTEX-printer to convert our Ehdm speci�cations into the exact

notation used by Lamport and Melliar-Smith; the listings in LaTEX form are given

in Appendix C. The translations for Ehdm identi�ers supplied to the LaTEX-printer
are displayed in Table A.1 of Appendix A.

Cross-Reference Tools. There are 472 Ehdm identi�ers declared in our speci-

�cation of the Interactive Convergence Clock Synchronization Algorithm. Keeping
track of the declaration and uses of these identi�ers could become quite burden-
some, so the Ehdm environment provides simple cross-reference functions to assist

in this task. Two of these functions allow the user to locate and jump to the dec-
larations and uses, respectively, of a given identi�er; the third provides a tabular

cross-reference to all declarations in a given Ehdm library. (Ehdm allows speci�ca-
tion modules to be collected into \libraries" and manipulated as a group.)

The table produced by this third function of the Ehdm cross-reference tool
appears as Table A.2 in Appendix A.

4.2 The Formal Speci�cation and Veri�cation of the

Algorithm

A formal speci�cation generally divides into two components: one directly concerned

with the problem at hand, and another in which are developed all the \supporting
theories" needed in the �rst but peripheral to its main purpose. The supporting the-

ories provide the \background knowledge" that we would like to be able to assume

4.2. The Formal Speci�cation and Veri�cation of the Algorithm 45

example: Module

Using time

Exporting proc; c?1(?2); �; goodclock with time

Theory

proc: Type is nat

p: Var proc

c?1(?2): function[proc; clocktime! realtime]

T; T0; T1; T2; TN : Var clocktime

�: fraction

rho pos: Lemma �

2 � 0

rho small: Lemma �

2 < 1

goodclock: function[proc; clocktime; clocktime! bool] =

(� p; T0; TN :
(8 T1; T2 :

T0 � T1 ^ T0 � T2 ^ T1 � TN ^ T2 � TN
� jcp(T1)� cp(T2)� (T1 � T2)j �

�

2 � jT1 � T2j))

Proof

rho pos proof: Prove rho pos from fraction invariant fr �g

rho small proof: Prove rho small from fraction invariant fr �g

End example

Figure 4.2: LaTEX-printed Example Ehdm Speci�cation Module

46 Speci�cation and Veri�cation in EHDM

in order to get on with the main problem. With a formal speci�cation system, the

built-in \background knowledge" is generally very limited (usually it is little more
than predicate calculus with equality) and the construction of explicit speci�cations
for the supporting theories may often consume the greater part of a speci�cation

e�ort. It has been recognized for a long time that the development of certi�ed
libraries of generally useful supporting theories would be one of the most useful con-

tributions to reducing the cost and increasing the reliability of formal speci�cations.
The module library mechanism of the Ehdm system provides a suitable framework

for standard modules; however, the libraries have not yet been populated.

Examination of Chapter 2 will show that the background knowledge used in
the speci�cation and analysis of the Interactive Convergence Clock Synchronization
Algorithm includes a signi�cant amount of arithmetic, including inequalities, ab-

solute values, and summations, but not much else. Since we de�ne a good clock
without recourse to di�erentiation, we avoid the need for real numbers and can use

the rationals to represent time.

As mentioned earlier, integer and rational arithmetic are built into Ehdm. Thus,
the only supporting theories for arithmetic that we need to specify explicitly are

those for absolute values and for summation. Because Ehdm uses a higher-order
logic, induction schemes are provided axiomatically, rather than being built in as

rules of inference; consequently, we will also need a supporting theory to provide a
suitable induction axiom.

Our speci�cation and veri�cation of the Interactive Convergence Clock Synchro-
nization Algorithm is described in the three subsections following. First we describe

the Ehdm modules that provide the supporting theories, then those that build up
the speci�cation of the Algorithm, and �nally those that develop the proof that

the Algorithm maintains synchronization. Ten of the speci�cation modules gener-
ate TCC modules. These are mostly routine; explanations of interesting cases are

provided in the description of the parent module concerned. Listings of all the spec-
i�cation modules are given in LaTEX-printed form in Appendix C and in raw form
in Appendix D. Cross-references are provided in Appendix A. In the descriptions

below, we indicate both the raw and (in parentheses if it has one) the LaTEX-printed
form of each identi�er.

4.2.1 Supporting Theories

Nine modules provide supporting theories for the speci�cation.

4.2.1.1 Numeric types

This module introduces three subtypes of the built-in numeric types: posint and
posnum are the subtypes of integer and number respectively, comprising just the

strictly positive values; fraction is the subtype of number comprising just the

4.2. The Formal Speci�cation and Veri�cation of the Algorithm 47

half-open interval [0; 1). These types are used extensively in the speci�cation; for

example, n, the number of processors, is of type posint, R, the duration of a pe-
riod, is of type posnum, and rho (�), the bound on the rate of clock drift, is of
type fraction. By incorporating the constraints on these values in their types, we

avoid the need to separately axiomatize and cite those constraints in proofs, and we
increase the e�ectiveness of typechecking.

The system-generated module numeric types tcc contains the formulas that
must be proved in order to discharge the obligation to ensure that the subtypes

introduced in numeric types are nonempty. Successful proofs for these formulas
(the trivial system-generated proofs are inadequate) are provided in the module

numeric types tcc proofs.

4.2.1.2 Arithmetics

Although we said earlier that most of the arithmetic needed was built-in to Ehdm,

we were not quite telling the truth. The ground prover of Ehdm is a decision
procedure for linear arithmetic: multiplication is decided only when one of the

factors is a literal constant. Several of the formulas and constraints needed in the
speci�cation and veri�cation of the Interactive Convergence Clock Synchronization

Algorithm require use of nonlinear multiplication and division|e.g., terms such as
n�R

n�m
appear in the constraint C6.

Earlier versions of the Ehdm ground prover did not interpret division at all,
and provided a rather clumsy treatment of nonlinear multiplication. Enhancements
due to David Cyrluk provide much improved treatment of these functions in the

more recent versions of Ehdm. The current version of the Ehdm ground prover
reduces division by x (say) to multiplication by 1=x, and automatically applies the

cancellation law x � 1=x = 1. Because normalization may not always juxtapose a
term and its reciprocal, it is sometimes necessary to explicitly cite an instance of

the cancellation law in proofs (see Section 4.2.3.4).

Nonlinear multiplication is treated as an uninterpreted function, but the laws

of associativity, commutativity, and distributivity are applied and su�ce to prove
many formulas.

The main purpose of the module arithmetics is to introduce an axiom con-
cerning nonlinear multiplication that is needed in the veri�cation. The axiom is
mult pos, which describes the conditions under which the product x � y is strictly

positive (i.e., x and y must both be strictly positive, or both strictly negative).
Several lemmas that are consequences of this axiom are also stated and proved.

Note that some of the proofs (for example, quotient pos proof) use substitu-
tions such as

fy <- 1 / IF z = 0 THEN 1 ELSE z END IFg

48 Speci�cation and Veri�cation in EHDM

when fy <- 1/zg would seem more natural. The explanation is that all terms of

the form 1/z generate a TCC requiring the user to establish z /= 0. There will
presumably be conditions in other premises, or the conclusion, that do establish z

/= 0. However, the generation of TCCs is performed in a very local context, and the

TCC produced from the substitution will be simply z /= 0|which is unprovable.
The more complicated substitution actually used generates the provable TCC

IF z = 0 THEN 1 ELSE z END IF /= 0

The more complex substitution will cause no di�culty in the original proof
since the fact z /= 0, established elsewhere (for example, the conclusion to

quotient pos proof has z > 0 as a hypothesis), immediately reduces it to the
simple case.

The quantity �

2 appears frequently in the proof. We encode this in the function
half (x2)that is also introduced in the module arithmetics.

4.2.1.3 Absolutes

Absolute values are used extensively in the speci�cation. The absolute value function

is introduced in the module absolutes by the de�nition

a: VAR number

abs: function[number -> number] =

(LAMBDA a -> number: IF a<0 THEN -a ELSE a END IF)

Several useful lemmas are then stated and proved from this de�nition.
The module absolutes is completed by the statement and proof of two arith-

metic identities (rearrange and rearrange alt) that are used in a couple of other
modules. Several other arithmetic identities of this form are used only once each

and are stated and proved in the modules where they are required.

4.2.1.4 Natprops

Ehdm does not de�ne a subtraction operator on the natural numbers. The naturals
are a subtype of the integers in Ehdm, so that the expression n - m, where n and

m are naturals, is interpreted by coercing those values to type integer, and then
applying the integer subtraction operator to yield an integer result. If this appears
in a context where a natural is needed, a TCC will be generated requiring n > m to

be proved.
In our treatment of summations, it is more convenient to de�ne a direct

subtraction-like operator on the naturals. This is the function diff, which is intro-
duced in module natprops by the de�nition

diff: function[nat, nat -> nat] = (LAMBDA n, m -> nat:

IF n >= m THEN n - m ELSE 0 END IF)

4.2. The Formal Speci�cation and Veri�cation of the Algorithm 49

We also use the built-in function pred, de�ned by

pred: function[nat -> nat] = (LAMBDA n -> nat:

IF n > 0 THEN n - 1 ELSE 0 END IF)

Several derived properties of these two functions are stated and proved in the module

natprops.

4.2.1.5 Functionprops

The module functionprops de�nes the (higher-order) axiom of function extension-

ality. This is required for one of the proofs (mod sigma mult proof) in the module
sigmaprops. We de�ne this axiom for functions of type A -> B, where A and B are
type parameters to the module functionprops as follows:

F, G: VAR function[A -> B]

x: VAR A

extensionality: AXIOM (FORALL x : F(x) = G(x)) IMPLIES F = G

This example demonstrates some of the power and also some of the limitations to

Ehdm's module parameterization and type system. The ability to parameterize
modules by types and constants gives most of the advantages of polymorphism and

dependent typing within a very simple semantic framework. Its limitations are
exempli�ed by the fact that the axiom extensionality applies only to functions of

arity 1.10

4.2.1.6 Noetherian

This module introduces Noetherian induction. It is a standard module described

in the Ehdm tutorial [24, Chapter 6], and provides the basis for all the specialized
induction schemes that are introduced in the natinduction module. Notice that
the noetherian module is parameterized by an arbitrary type and a relation on

that type. In order for induction to be sound, we need to ensure that the relation
is well-founded. This is accomplished by the ASSUMING clause, which requires a

measure function to be exhibited for any instantiation of the module.

The statement of Noetherian induction is taken from the text by Manna and
Waldinger [20, page 6], as is the method for demonstrating well-foundedness [20,

pages 8{9]. For more discussion of Noetherian induction see the Ehdm tutorial [24].

10An experimental veri�cation system under construction at SRI avoids this limitation by sup-

porting tuple types.

50 Speci�cation and Veri�cation in EHDM

4.2.1.7 Natinduction

This module derives specialized induction schemes over the natural numbers from
the general Noetherian induction scheme introduced in the previous module. The

main result is the lemma induction, which states the rule of simple induction
over the natural numbers. The proof of this result is very similar to that for the

formula of the same name in the module simple induction that is described in the
Ehdm tutorial [24, Chapter 6]. That reference may be consulted, in particular, for

a description of the way in which the assumptions on the module noetherian are
discharged.

The formula induction2 is similar to induction, but applies to predicates of two
arguments, where the induction is performed over the second argument. Its proof,
which involves a \currying" function, may be of interest. This induction scheme,

and also the one called mod induction1, are both used in the module sigmaprops.

Mod induction1 is derived from a formula called mod induction m, which itself

is derived from one called induction m, which in turn follows from induction.
Induction m is the same as induction, but with the value m, rather than zero, as the

base case. The modi�ed scheme mod induction m is a specialization of induction m

for the proof of predicates of the form A(i) � B(i). The inductive step in such cases

has the form

(A(i) � B(i)) � (A(i+ 1) � B(i + 1)):

This is equivalent to

((A(i) � B(i))^ A(i+ 1)) � B(i + 1)

which, when we know in addition that A(i+ 1) � A(i), reduces to

(A(i+ 1)^B(i)) � B(i + 1):

This is the form for the inductive step that is stated in mod induction m and proved

in mod m proof. The lemma mod induction1 is simply the specialization to the case
m = 1.

A couple of other formulas, mod induction and induction1, are stated and
proved in the module, but are not used in the present veri�cation.

4.2.1.8 Sums and Sigmaprops

Choosing how primitive the axiomatic basis for a supporting theory should be is
a matter of taste, conscience, and the time and funds available. Ideally, each sup-

porting theory should be built up from a small and primitive set of self-evident,
well-accepted axioms. Unfortunately, it may then require a considerable expendi-

ture of time and e�ort to build the body of veri�ed lemmas and theorems for the

4.2. The Formal Speci�cation and Veri�cation of the Algorithm 51

supporting theory that are needed to solve the actual problem at hand. The alter-

native is to simply assert as axioms the results that are actually needed from the
supporting theory. The danger here is self-evident|it is remarkably easy to state
plausible, but false axioms.

When formal speci�cation and veri�cation is practised more widely, we would
expect that veri�ed libraries of common supporting theories will be available. In

the meantime, we are confronted with a dilemma: either build up the supporting
theories from primitive axioms|and risk never getting to the original problem of

interest, or else concentrate on the original problem|and risk building on sand. We
pursued a variant of the second course in developing this proof of the Interactive

Convergence Clock Synchronization Algorithm. In order to make progress on the
main problem, we adopted expedient axioms at �rst, then as time has permitted,

we went back to develop the supporting theories with greater care and with a view
to incorporating them in libraries.

Our �rst veri�cation of the Interactive Convergence Clock Synchronization Al-

gorithm used high-level axiomatizations of the concepts of summations and means
from the module sums. Later, we developed a module sigmaprops that establishes

results very similar to those used in sums as veri�ed consequences of very primitive
de�nitions. Later still, we replaced all the axioms in module sums by equivalent

lemmas that are proven from those in sigmaprops. When time permits, we may
make a �nal revision to these parts of the speci�cation in order to render them

suitable for inclusion in a library.

Sums. The module sums introduces two higher-order functions, called sum

(
Pj

i
(F)) and mean (

Lj

i
(F)), respectively. Each takes three arguments: the �rst

two are natural numbers, and the third is a function from the natural to the ra-

tional numbers. The intended interpretation for sum is that it sums the function
supplied as its third argument from the value supplied as its �rst argument to that

supplied as its second. That is, in conventional mathematical notation,

sum(i, j, F) =
jX

r=i

F (r)

If j < i, the value of sum is intended to be zero. The Ehdm speci�cation of
the function sum de�nes it in terms of the more primitive function sigma that is

described in the next subsection.
The function mean, which speci�es the (arithmetic) mean, is de�ned in terms

of the sum function in the obvious way. The lemma mean lemma simply restates
the de�nition of mean directly in terms of the more primitive function sigma. Ten

further lemmas then introduce additional properties of the sum and mean functions.
The �rst, split sum, states that under suitable conditions a summation from i

to j is equal to the sum of two smaller summations: one from i to k, and the other

52 Speci�cation and Veri�cation in EHDM

from k + 1 to j. Split mean, the corresponding result for mean, is proved directly

from split sum.
Lemma sum bound says that if a function is bounded by a constant x throughout

the range i to j, then its summation over that range is bounded by x� (j � i+ 1);

the lemma mean bound states the corresponding result for the mean function and is
proved from sum bound.

The lemmas mean const and mean mult simply state that the mean of a constant
is that constant, and that the mean of a function multiplied by a constant is the same

as the mean of the function multiplied by the constant. Mean sum and mean diff

state that the mean of the sum or di�erence of two functions are equal to the sum

or di�erence of the means. Abs mean states that the absolute value of a mean is less
than or equal to the mean of the absolute values. Finally, rearrange sum states a

simple property that is needed in module summations.
The lemmas in module sums are derived from similar results stated for the more

primitive sigma function in the module sigmaprops, which is described next.

Sigmaprops. The module sigmaprops introduces a function sigma (�(i; n; F))

similar to sum described above. The signi�cant di�erence, however, is that whereas
sum(i, j, F) is intended to denote the sum of F from i to j, sigma(i, n, F) is
intended to denote the sum of the n terms of F from i to i + n - 1.

Sigma is de�ned by a recursive de�nition. In order to ensure that recursive
de�nitions are well-de�ned, Ehdm requires that a measure function be speci�ed

for each such de�nition. A measure function must have the same domain as the
recursive function being de�ned, but range type nat. Ehdm then generates TCCs

stating the requirement that the value of the measure function be strictly decreasing
across each recursive call. For the case of sigma, we have the following speci�cation:

i: VAR nat

F: VAR function[nat -> number]

n: VAR nat

middle: function[nat, nat, function[nat -> number] -> nat] ==

(LAMBDA i, n, F : n)

sigma:recursive function[nat, nat, function[nat -> number] -> number] =

(LAMBDA i, n, F :

IF n = 0 THEN 0 ELSE sigma(i, pred(n), F) + F(i + pred(n)) END IF)

BY middle

The function middle, whose value is the second (or middle) of its three arguments,
is speci�ed as the measure function. Ehdm generates the termination TCC

sigma_TCC1: FORMULA

(NOT (n = 0)) IMPLIES middle(i, n, F) > middle(i, pred(n), F)

4.2. The Formal Speci�cation and Veri�cation of the Algorithm 53

which is easily provable. For more detailed explanation of recursive functions, see

the Ehdm tutorial [24, Chapter 6].

Seven lemmas concerning the function sigma are stated and proved in module
sigmaprops. The names used are in correspondence with those used for the lemmas

in sums: for example, split sigma in sigmaprops corresponds to split sum and
split mean in sums. The proofs in sigmaprops mostly use induction; the induction

schemes employed are from the module natinduction.

Some of the proofs in sigmaprops use a function revsigma which is de�ned

like sigma, but with the recursion going in the opposite direction. A lemma called
sigma rev establishes that these two functions are extensionally equal. A second

function, called bounded, is also de�ned and used internally by sigmaprops.

4.2.2 Speci�cation Modules

The speci�cation of the Interactive Convergence Clock Synchronization Algorithm
is performed in three modules described below.

4.2.2.1 Time

The module time is the �rst one that introduces concepts directly concerned
with the Interactive Convergence Clock Synchronization Algorithm. It introduces

clocktime, realtime, posclocktime, posrealtime, and period as types, and es-
tablishes number (i.e., the rationals) as the interpretation of the �rst two, posnum

(i.e., the strictly positive rational numbers) as the interpretation of the third and
fourth, and the naturals as the interpretation of the �fth. R, S, and T ZERO (T 0)

are introduced as constants of type posclocktime, and clocktime, respectively,
and then the functions T sup (T (i)), in R interval (T 2 R(i)), and in S interval

(T 2 S(i)) are introduced and de�ned in the obvious way. The constraint C1 (R

>= 3 * S) is also de�ned here, and several straightforward lemmas are stated and
proved.

4.2.2.2 Clocks

The module clocks introduces proc (short for processor) as a type interpreted by
the naturals, and introduces the uninterpreted function clock (c?1(?2)).

Next, the drift rate rho (�) is introduced as a constant of type fraction, together
with the predicate goodclock. The intended interpretation is that goodclock(p,

T0, TN) will be true when processor p is a good clock in the clock time interval
[T0, TN].

Our de�nition of goodclock implies that a good clock is strict monotonic in-
creasing. This fact is stated as the Theorem monotonicity and proved in the proof

part of module clocks.

54 Speci�cation and Veri�cation in EHDM

4.2.2.3 Algorithm

The core of the Interactive Convergence Clock Synchronization Algorithm is de�ned

in the module algorithm. We introduce m and n as constants of type proc, and
assert that m < n (axiom C0). The constants eps (�), delta0 (�0), and delta (�)

are introduced as constants of type posrealtime, while sigma (�) and Delta (�)
are introduced as constants of type posclocktime.

Next, the functions Delta2 (�
(?3)
?1;?2), D2bar (

��
(i)
r p), and Delta1 (�

(i)
p), are intro-

duced along with the correction, adjusted-value, and logical clock functions: Corr

(C
(i)
p), adjusted (A

(i)
p (T)), and rt (c

(i)
p (T)), respectively. These are the de�nitions

at the heart of the Interactive Convergence Clock Synchronization Algorithm. The

correction function is de�ned recursively. In the original version of the veri�cation,

the bottom case of the recursion (i.e., the initial correction C
(0)
p) was de�ned to be

zero, which is how it is de�ned by Lamport and Melliar-Smith. The current ver-

i�cation uses an uninterpreted and unconstrained function initial Corr (C0
?1) to

supply the bottom case.

The clock synchronization conditions are speci�ed next, following the predicate
nonfaulty and the function skew: skew(p, q, T, i) is the skew between the

logical clocks of processors p and q in period i at clock time T (i.e., jc
(i)
p (T)�c

(i)
q (T)j).

In the traditional mathematical presentation, we identi�ed S1 with the requirement
that the skew between nonfaulty processors should always be less than �. However,

we also need to consider the condition under which this bound should hold|namely
that there should be at most m faulty processors. We regard this condition as the

antecedent to S1 and identify it with the predicate S1A, which states the requirement
that there should be at least m - n processors nonfaulty through the synchronization

period considered. The speci�cation of this last requirement:

(FORALL r: (m+1 <= r AND r <= n) IMPLIES nonfaulty(r, i))

assumes that it is those processors numbered m+1 to n that are the nonfaulty ones.
Clearly there is no loss of generality in this.

The consequent to S1 gives the bound on the skew between the clocks of non-

faulty processors and is stated as the predicate S1C:

S1C: function[proc, proc, period -> bool] =

(LAMBDA p, q, i :

(FORALL T :

nonfaulty(p, i) AND nonfaulty(q, i) AND in_R_interval(T, i)

IMPLIES skew(p, q, T, i) <= delta))

The clock synchronization condition S1 itself is then stated as follows:

S1: function[period -> bool] =

(LAMBDA i: S1A(i) IMPLIES (FORALL p, q: S1C(p, q, i)))

4.2. The Formal Speci�cation and Veri�cation of the Algorithm 55

The assumptions A0, A1, and A2 are stated next (they cannot precede the spec-

i�cation of the clock synchronization conditions S1 and S2 since assumption A2 is
predicated upon S1C and S2). The speci�cations of these assumptions are straight-
forward, but note that whereas the informal statement of A1 says that if p is non-

faulty through period i, then (this implies that) p has a good clock during the
corresponding interval, the formal de�nition uses equivalence instead of implication.

This is necessary because we will later need to prove that if p is nonfaulty through
period i+ 1, then it is also nonfaulty through period i.

Next, the constraints C0 and C2 to C6 are speci�ed, and several minor lemmas are
stated. Finally, the theorems that assert, respectively, the two clock synchronization

conditions S1 and S2 are de�ned. The proof of the latter is simple and is performed
directly in the proof part of the module algorithm.

The theorem that asserts the satisfaction of the condition S1 is stated as:

Theorem_1: THEOREM S1(i)

It is often advantageous to state theorems that are to be proved by induction as

predicates on the induction variable|as is done here. Doing so allows instances of
the theorem to be stated as explicit hypotheses in lemmas that are themselves used
to establish the inductive step. An example is in the formula culmination in module

summations. In the �rst version of the veri�cation, we stated the condition S1 as
a formula, rather than a predicate. The dependence of the formula culmination

on S1 was then implicit (S1 was cited in the proof of culmination), and the Ehdm
Proof Chain Analyzer reported a circularity in the proof of S1 which we had to argue

away as \apparent rather than real." Use of predicates to avoid this sort of di�culty
is part of the lore of mechanical theorem proving. We �rst heard it articulated by

our colleague Shankar, but its application to this particular speci�cation derives
from Bill Young's re-veri�cation of the Algorithm using the Boyer-Moore theorem

prover [30].

4.2.3 Proof Modules

As noted, the proof of Theorem 2 (the Interactive Convergence Clock Synchroniza-

tion Algorithm maintains the clock synchronization condition S2) is provided di-
rectly in the module algorithm. The proof of Theorem 1 (the Algorithm maintains

clock synchronization condition S1) spans 10 modules that are described below.

4.2.3.1 Clockprops

The module clockprops is chiey concerned with establishing some bounds on

A
(i)
p (T + �) that are needed to establish Lemma 2. These bounds are stated as

the lemmas upper bound, lower bound, and lower bound2. A subsidiary lemma

called adj always pos is also stated; it is used in the proof of lower bound, which

56 Speci�cation and Veri�cation in EHDM

in turn is used to establish lower bound2. The proof of adj always pos requires

an induction. The proof of upper bound, on the other hand, is straightforward.
The two lemmas nonfx and S1A lemma complete the module clockprops. The

�rst states that if a module is nonfaulty through period i + 1, then it is certainly

nonfaulty through period i. This is established as a consequence of A1 and a lemma
(gc prop) that is a direct consequence of the de�nition of a good clock. S1A lemma

states the corresponding result for S1A, and is proved directly from nonfx.

4.2.3.2 Lemmas 1 to 6

These follow exactly the structure and naming described in Chapter 2. Indeed, the

description in that chapter was derived directly from the formal speci�cations and
proofs in these six modules.

Each lemma is stated and proved in a module with the appropriate name. The
result called Sublemma A is to be found as a subsidiary lemma sublemma A in the

module lemma6.

4.2.3.3 Summations

The module summations is concerned with establishing the inductive step needed

in the proof of Theorem 1. This result is stated as the lemma called culmination,
and is proved from a series of intermediate lemmas named l1 through l5.

The lemma l1 connects the main term in the conclusion of Lemma 6 with the
averaging step performed by the Algorithm (in the de�nition of �

(i)
p). Lemma

l2 splits the summation implicitly involved in l1 into two smaller summations|
one over the faulty processors and one over the nonfaulty ones. Lemma l3 uses

Lemma 5 to obtain a bound on the sum of the errors introduced by the faulty
processors; a subsidiary lemma called bound faulty is used in the process. Lemma
l4 uses Lemma 4 to obtain a bound on the sum of the errors introduced by the

nonfaulty processors; a subsidiary lemma called bound nonfaulty is used in the
process. Lemma l5 simply combines lemmas l2, l3 and l4; the culmination

lemma is proved by combining l5 with Lemma 6.

4.2.3.4 Juggle

The module juggle proves the lemma rearrange delta. This result is a straight-

forward algebraic manipulation. The proof in Ehdm is divided into two simpler
lemmas, called step1 and step2, which are similar to those used when performing

the proof by hand (�rst multiply by n - m, rearrange, divide by n and rearrange
again). The proofs of the two intermediate lemmas cite several instances of the

lemma mult div:

mult_div: LEMMA y /= 0 IMPLIES x/y*y = x

4.3. Statistics and Observations 57

This lemma is proved directly (i.e., without premises) by the Ehdm ground prover

since the cancellation law is built in. The lemma is not superuous, however, since
the instances of the cancellation law required in the main proof are more complex
than those that can be recognized automatically. By citing appropriate instances of

the lemma mult div, we can guide the prover along the right path.

4.2.3.5 Main and Top

The module main provides the proof of Theorem 1. It uses the induction scheme

induction from the module natinduction, with the main work for the inductive
step provided by the culmination lemma from module summations. The rather

grotesque arithmetic manipulation required to complete the proof is provided by
the lemma rearrange delta from the module juggle.

This module top simply ties all the other speci�cation modules together and
provides proofs for 8 TCCs whose automatically-generated proof declarations are

inadequate.

4.3 Statistics and Observations

The speci�cation and veri�cation described here was performed using Ehdm Version
5.2.0 running on a Sun sparcstation 2.

The speci�cations described here occupy 34 modules, comprising about 1,465

(nonblank) lines of Ehdm (10 of the modules are system-generated TCC modules;
the 24 non-system-generated modules comprise just under 1,300 lines). There are

193 proofs in the full speci�cation, of which 11 are unsuccessful; all of these are trivial
automatically-generated proofs for TCC formulas and are supplanted by manually-
constructed proofs among the successful 182. It takes about 10 minutes to process

all 193 proofs (a little over 3 seconds each, on average). It is hard to obtain accurate
timings for individual proofs, since garbage collection and system load introduces

considerable variability|however, the worst case seems to be about 45 seconds (for
sb proof in sigmaprops.) The proofs in each module are summarized in Table 4.1

below, which reproduces part of the output from the Ehdm \proveall" command.

Of course, the raw statistics of CPU time and numbers of proofs and lines of
speci�cation text are among the most super�cial measures one can provide for a
formal speci�cation and veri�cation. More interesting are the questions of how

much human e�ort was required, whether the bene�ts of the exercise could have been
obtained more cheaply by other techniques, and whether the particular speci�cation

and veri�cation techniques and tools used were a help or a hindrance to the e�ort.

Unfortunately, we did not accurately record the human e�ort expended on this
exercise, so the following account relies on memory. Our �rst attempt to perform

the veri�cation occupied a week, with both of us devoting about three-quarters of

58 Speci�cation and Veri�cation in EHDM

numeric types no proofs

numeric types tcc 0 successful proofs 3 failures
numeric types tcc proofs 3 successful proofs 0 failures

arithmetics 7 successful proofs 0 failures
arithmetics tcc 6 successful proofs 0 failures
absolutes 20 successful proofs 0 failures

absolutes tcc 3 successful proofs 1 failure
natprops 6 successful proofs 0 failures

natprops tcc 1 successful proof 0 failures
functionprops no proofs

noetherian no proofs
natinduction 8 successful proofs 0 failures

natinduction tcc 1 successful proof 0 failures
sums 16 successful proofs 0 failures

sums tcc 2 successful proofs 0 failures
sigmaprops 30 successful proofs 0 failures
sigmaprops tcc 2 successful proofs 0 failures

time 8 successful proofs 0 failures
clocks 4 successful proofs 0 failures

algorithm 7 successful proofs 0 failures
algorithm tcc 1 successful proof 1 failure

clockprops 12 successful proofs 0 failures
lemma1 1 successful proof 0 failures

lemma2 5 successful proofs 0 failures
lemma3 1 successful proof 0 failures

lemma4 6 successful proofs 0 failures
lemma5 3 successful proofs 0 failures
lemma6 4 successful proofs 0 failures

summations 9 successful proofs 0 failures
summations tcc 0 successful proofs 3 failures

juggle 4 successful proofs 0 failures
juggle tcc 1 successful proof 3 failures

main 3 successful proofs 0 failures
top 8 successful proofs 0 failures

Totals 182 successful proofs 11 failures

Table 4.1: Proof Summaries for Ehdm Modules

4.3. Statistics and Observations 59

our time to the e�ort. One of us broke the published proof of Lamport and Melliar-

Smith down into elementary steps, while the other encoded these in Ehdm and
persuaded the theorem prover to accept the proofs. At this point we had caught
the typographical errors in Lemmas 2 and 4, and had proofs of Lemmas 1, 3, 4,

and 5|but Lemma 2 was essentially taken as an axiom. Approximate equality and
inequalities were used freely at this stage, although several of the formulas needed

were mentally agged as suspicious.

It was when we attempted to establish Lemma 2 as a consequence of a more
primitive axiomatization of the properties of good clocks that we �rst came to

suspect that the published proof was awed. Once we had satis�ed ourselves that
this was indeed so, we became more critical of other aspects of the published proof
and checked all the formulas (treated as axioms at this stage) needed to support

the use of approximations. This led us to fully recognize the awed character of the
proofs for Lemma 4 and the main Theorem.

Until this point we had merely been attempting to mechanize the published

proof, and had not really internalized that proof, nor tried independently to re-
create it. As a result of discovering aws in the published proof, our interest in

the veri�cation exercise increased considerably and we sought not only to eliminate
the use of approximations, but to simplify and systematize the proof as well. The
elimination of approximations was accomplished quite easily, and simpli�cation of

the proofs of Lemmas 1, 3, 4 and 5 was achieved by more systematic use of the
arithmetic \rearrangement" identities (e.g., x = (u � v) + (v � w) � (u � [w + x])

used in Lemma 1). All this work was done by hand, and only cast into Ehdm and
mechanically veri�ed towards the end.

Our restructuring and better understanding of the proofs reduced the Ehdm

proof declarations for Lemmas 3 and 4 to between a half and a third of their previous
lengths (elimination of the unnecessary � from Lemma 3 also contributed to the
simpli�cation of its proof). It was during this stage of the mechanical veri�cation,

that we recognized the need for several variants on Lemma 2, and for modi�cations
to Assumption A2. This stage of the e�ort (including the manual reformulation of

the proof, as well as its mechanization) consumed about three man-weeks.

Next we mechanized the proof of the main theorem, developing the modules
lemma6, summations, and main. The formulas in module sums were developed while

doing the proofs in module summations and were used as axioms at this stage|
which consumed about two-man weeks.

Finally, we began to put the whole veri�cation together and to prepare this doc-
ument. We developed the module sigmaprops and used it to prove the previously

unproved formulas in module sums. We discovered several minor aws in the state-
ments of those formulas while performing their proofs. As we began to describe

and document our speci�cations and proofs, we �lled in missing fragments (e.g.,

60 Speci�cation and Veri�cation in EHDM

the module juggle, which took a man-day to create11), and continually revised

the modules of the supporting theories in order to simplify and systematize the
axiomatic basis on which the whole veri�cation depends. This process proceeded
in parallel with the preparation of this report|both activities together consumed

about two man-months.

In the period following publication of the �rst edition of this report in Febru-
ary 1989, we have undertaken additional veri�cations and have made signi�cant

improvements to the Ehdm language and system. As we gained experience and
as new capabilities became available, we modi�ed the speci�cation and veri�cation

accordingly. The total time expended on these adjustments to the veri�cation was
probably less than a man-week.

We have described the chronology of this e�ort in some detail to illustrate the
following points:

� The mechanical veri�cation was interleaved with pencil and paper mathemat-
ics, and each activity stimulated the other. We expand on this below, but the

essential point is that formal speci�cation and veri�cation can assist rather
than replace human thought and scrutiny.

� A substantial portion of the time devoted to the mechanical veri�cation was
expended on the supporting theories. As formal veri�cation becomes more

widely practiced, we would expect libraries of such theories to become estab-
lished, so that later e�orts can concentrate their e�orts on the problem of real

interest.12 If we neglect the e�ort spent on the supporting theories, then the
time required to perform the mechanical veri�cation was of a similar order
to that required to prepare an adequately detailed \journal-level" description

and proof for human consumption (i.e., the �rst 3 Chapters of this report).

� \High-level" axioms are almost always wrong! The main bene�t of mechanical

veri�cation is the extreme rigor of the scrutiny to which proofs are subjected.
This bene�t is subverted if axioms are introduced casually. It was not until

we attempted to build our proofs on the most basic de�nition of a good clock,
and seriously scrutinized the lemmas required of the approximation operators,

that we began to discover the aws in the published proof. Similarly, our
�rst-cut axiomatizations of the summation operators were awed (typically

at boundary cases). Others who have undertaken formal speci�cation and
veri�cation exercises have privately reported similar experiences.

11This was using an earlier version of Ehdm that had poor support for division and nonlinear

multiplication. The proof of rearrange delta required 13 intermediate lemmas in that version.
12
Ehdm provides linguistic and system support (in the form of module parameterization, and a

mechanism for managing module libraries, respectively) that are explicitly intended for the support

of reusable speci�cations.

4.3. Statistics and Observations 61

The veri�cation described in the �rst edition of this report depended on 47

axioms. Of these, 29 (6 in module time, 6 in clocks and 17 in algorithm) de-
�ned the concepts, constraints, and algorithm of direct interest. The other 18
introduced supporting concepts (e.g., summation) or properties of arithmetic

beyond those built into the system (i.e., some of the properties of division and
multiplication).

The current veri�cation exploits improved capabilities for conservative exten-

sion (i.e., constant and subtype de�nitions) introduced in Ehdm Version 5 and
reduces the number of axioms required to 13. Of these, 7 are the constraints
C0 to C6 and three specify the assumptions A0, A2, and A2 aux. Thus, 10 of the

axioms are fundamental to the speci�cation of the problem of interest. The
remaining three axioms specify Noetherian induction, function extensionality,

and the condition under which the product of two numbers is strictly positive.
All other concepts of the speci�cation (including all the supporting theories

concerned with summation) are introduced by means of de�nitions and thus
cannot introduce inconsistencies.

However, as noted earlier, the previous version of the veri�cation used a de�ni-
tion for the predicate good clock that is unsatis�able (i.e., there can be no clocks

satisfying the predicate). This is not inconsistent (an inconsistency results if
we add an axiom asserting that there is a good clock), but it is almost equally

damaging, since our theorems have the form \if at least a certain number of
clocks are good, then the good clocks stay synchronized." Since there can be

no good clocks, the antecedent is false and the theorem is true, but useless.
(It has the same structure as the true theorem \if 1=2, then 2=3.") De�ni-

tions need to be scrutinized no less carefully than axioms in order to ensure
that they capture the intent of the speci�cation. A formal veri�cation system
can support this by allowing experimentation and \reasonableness tests." For

example, it is reasonable to expect that a de�ned predicate is not independent
of its arguments. The aw in our previous de�nition of a good clock would

have become readily apparent if we had attempted to prove the test case that
a perfect clock is a good clock (i.e., that the de�nition of a good clock is

satis�able when the clock is the identity function). It is possible to perform
these tests in Ehdm using mapping modules (the clock function is a constant,

not a variable, so the test cannot be performed within the speci�cation; it is
necessary to consider a model or interpretation). We have not done so for this

speci�cation because the current implementation of Ehdm has some technical
de�ciencies in this regard. We are considering ways in which Ehdm Version 6
can provide improved support for these activities.

We spent a great deal of e�ort reducing the number and simplifying the content

of the 10 remaining axioms underlying our speci�cation of the Interactive

62 Speci�cation and Veri�cation in EHDM

Convergence Clock Synchronization Algorithm, and believe that they provide

a simple and near-minimal foundation on which to construct the de�nition and
analysis of this algorithm. Similarly, we believe that the 3 supporting axioms
correspond to conventional interpretations of the concepts concerned.

It is generally possible to establish the soundness of axiomatizations in Ehdm
by exhibiting a model.13 We have not done so for this speci�cation because, as
noted, the current implementation of Ehdm has some de�ciencies when map-

ping modules that contain both interpreted and uninterpreted functions. We
intend to demonstrate the soundness of the 10 axioms used in the speci�cation

of the algorithm when Ehdm Version 6 becomes available.

It is di�cult to answer the question whether the aws we found in the published

analysis of the Interactive Convergence Clock Synchronization Algorithm could have
been discovered more easily by other methods. Once the aws are known, they

are easy to describe and their presence in the published proof is almost painfully
obvious. Nonetheless, as far as we know, these aws were not discovered previously.

The reputation of the journal in which the paper was published, and of its authors,
may have caused some to assume that the proof \must be right" without further

scrutiny, and may have stilled any doubts in the minds of those who examined the
proof in su�cient detail to become concerned by some of its details. Some who

scrutinized the proof with great care decided that it would be easier to develop
their own analysis than to persuade themselves of the veracity of the original.14

The root di�culty, we believe, lies in the fact that the proof in [16], though nei-
ther mathematically deep nor intrinsically interesting, is astonishingly intricate in its

details. The analysis of many algorithms, computer programs, and similar artifacts
shares this characteristic|and renders the standard \mathematical demonstration"

(which forms the basis for the consensus model of classical mathematics) unreliable
in these contexts.

The only reliable method for conducting such highly intricate analyses is, we

believe, a strictly formal one|one in which the \symbols do the work" just as they
do in arithmetic and other detailed calculations. Formal calculations can introduce
their own class of errors, but their formal character means that they can be checked

easily (if tediously) by others. Once the decision to use a strict formalism has been
taken, the additional cost of subjecting the calculations to mechanical checking is

not great|providing the formal system and notation used by the machine does not
di�er too much from that used by the hand and brain.

We found Ehdm very satisfactory from this perspective: because Ehdm uses a

standard logic (predicate calculus) with all the usual quanti�ers and connectives,

13Actually, a theory interpretation and the soundness is relative to that of the second theory.

See [24, Chapter 3].
14Fred Schneider has told us that this was one of the motivations behind [25].

4.3. Statistics and Observations 63

transliterating from the notation of Lamport and Melliar-Smith into the speci�cation

language of Ehdm was straightforward. Automation of the reverse translation (by
the LaTEX-printer) enabled us to do most of our work and thinking using compact
and familiar notation and thereby contributed greatly to our productivity. The

higher-order capabilities of Ehdm allowed us to de�ne the summation and averaging
operators very straightforwardly and also enabled us to tailor induction schemes

appropriately.

The arithmetic decision procedures ofEhdm were of immense value in the formal
veri�cation. We doubt that veri�cation environments lacking such decision proce-

dures could accomplish the work described here without unreasonable e�ort. We
found the basic theorem-proving paradigm of Ehdm straightforward and adequate

for its purpose (though others, especially novices, might not agree). The correspon-
dence between the information in an Ehdm \prove" declaration and that required

for a journal-level proof description is quite close. Naturally, increased automation
of details (for example, use of term rewriting to mechanize equational theories, and

automatic discovery of substitution instances) would be welcome,15 but we did not
�nd theorem proving to be a bottleneck. (Discovering the correct theorems to prove
was the bottleneck.)

The module structure supported by the Ehdm speci�cation language and its
support environment simpli�ed the task of managing and comprehending a formal
development that eventually became quite large, and enabled us to keep track of

undischarged proof obligations. The latter service was particularly valuable, due
to the way in which our formal speci�cation and veri�cation were developed. Our

approach was very much top-down: we introduced lemmas whenever it was conve-
nient to do so, and worried about proving them later. We may have carried this

approach a little too far in the early stages (i.e., we did not examine the content
of our lemmas with su�cient care), but we did not know at that period whether

our attempt to mechanically verify the algorithm would be successful16 and we were
anxious to explore the more obviously di�cult parts �rst.

Overall, we did not �nd the formal speci�cation and mechanical veri�cation of

the Interactive Convergence Clock Synchronization Algorithm particularly demand-
ing. The main di�culty was the sheer intricacy of the argument, and we found

the discipline of formal speci�cation and veri�cation to be a help, rather than a
hindrance, in �nally mastering this complexity.

We found that Ehdm served us reasonably well; we do not know whether other

speci�cation and veri�cation environments would have fared as well or better. Un-
derstanding the practical bene�ts and limitations of di�erent approaches to for-
mal speci�cation and mechanical theorem proving is necessary for sensible further

15And will be available in Ehdm Version 6.
16The algorithm (or rather an implementation of it) had been asserted to be \probably beyond

the ability of any current mechanical veri�er" [21, page 9].

64 Speci�cation and Veri�cation in EHDM

development of veri�cation environments. Consequently, we invite the developers

and users of other veri�cation systems to repeat the experiment described here.
We suggest that the Interactive Convergence Clock Synchronization Algorithm is
a paradigmatic example of a problem where formal veri�cation can show its value

and a veri�cation system can demonstrate its capabilities: it is a \real" rather than
an arti�cial problem, its veri�cation is large enough to be challenging without being

overwhelming, it requires a couple of fairly interesting supporting theories, and its
proofs are quite intricate and varied.

Since this \challenge" appeared in the �rst edition of this report, Bill Young
of Computational Logic Inc. has repeated our veri�cation using the Boyer-Moore

theorem prover [30]. Young used extensions [13] to the standard Boyer-Moore
prover [3, 4] that permitted him to use quanti�ers and to introduce uninterpreted

functions whose properties are stated axiomatically. He inhibited much of the auto-
matic rewriting and associated proof-search normally performed by the Boyer-Moore
prover and followed our veri�cation pretty much lemma for lemma. Young drew our

attention to one of the de�ciencies in our original speci�cation of a good clock, and
found a better way to organize the main induction. A collaborative paper comparing

the two veri�cations, and the systems in which they were undertaken, is planned for
the future.

Chapter 5

Conclusions

\The virtue of a logical proof is not that it compels belief but that it

suggests doubts." [15, page 48]

Veri�cation does not prove programs \correct"; it merely establishes consistency
between one description of a system and another. The extent to which such consis-

tency can be equated with correctness depends on the extent to which one of the
descriptions accurately states all the properties required of the system, on the extent

to which the other accurately and completely describes its actual behavior, and on
the extent to which the demonstration of consistency between these two descriptions

is performed without error.

In practice, all three of these limitations on \correctness" pose signi�cant chal-
lenges. The behavior of the actual system will depend on physical processes that

may not admit completely accurate descriptions, or that may be subject to random
e�ects, while the properties required of the system may not be fully understood, let

alone fully recorded in its speci�cation. And demonstration of consistency between
the two descriptions of the system will be subject to the errors attendant upon any

human enterprise. Formal speci�cation and veri�cation attempts to control and
delimit some of the di�culties associated with veri�cation; the use of formal speci-
�cations can at least provide precise and unambiguous descriptions of the intended

behavior of the system|the questions remain whether these descriptions correctly
capture what is really required, or what the behavior of the system really is, but at

least the doubt about what the descriptions themselves mean is removed. Formal
veri�cation attempts to put the demonstration of consistency between two sys-

tem descriptions onto a more reliable basis by making it a mathematical|indeed,
calculational|activity that can be checked by a mechanical theorem prover. Of

course, the validity of this approach depends on the extent to which the semantics
of the speci�cation language are correctly implemented by its support environment,

and on the correctness of the mechanical theorem prover. These represent signi�-

65

66 Chapter 5. Conclusions

cant challenges, but they are at least more sharply posed than the problems with

which we began.

Formal veri�cation is no more than a formalization of one of the components
in the widely practiced software quality assurance process called Veri�cation and

Validation (V&V). Validation (testing), the other component to this process, is not
made redundant or unnecessary by formalizing the veri�cation component. Indeed,

formal veri�cation can help clarify the assumptions that should be validated by
explicit testing.

The opening paragraphs of the introductory document to Ehdm [24] make our

own attitude clear:

\It must be understood that writing formal speci�cations and perform-

ing veri�cations that really mean something is a serious engineering en-
deavor. And although formal speci�cation and veri�cation are often rec-

ommended for systems that perform functions critical to human safety
or national security, it should be recognized that formal analysis alone
cannot provide assurance that systems are �t for such critical functions.

Certifying a system as `safe' or `secure' is a responsibility that calls for
the highest technical experience, skill, and judgment|and the consider-

ation of multiple forms of evidence. Other important forms of analysis
and evidence that should be considered for critical systems are system-

atic testing, quantitative reliability measurement, software safety analy-
sis, and risk assessment. Also, it should be understood that the purpose

of formal veri�cation is not to provide unequivocal evidence that some
aspects of a system design and implementation are `correct,' but to help

you the user convince yourself and others of that fact; the veri�cation
system does not act as an oracle, but as an implacable skeptic that insists
on you explaining and justifying every step of your reasoning|thereby

helping you to reach a deeper and more complete understanding of your
design."

The opponents to formal veri�cation [10, 12] ignore caveats such as those ex-
pressed above (which are similar to those expressed by all serious proponents of

formal veri�cation) and perform a straw man attack in which veri�cation is set up
as an unequivocal demonstration of correctness, and in which intelligent human par-
ticipation is minimized in favor of an omniscient mechanical veri�er. For example,

De Millo, Lipton and Perlis [10] claim that:

\The scenario envisaged by the proponents of veri�cation goes something

like this: the programmer inserts his 300-line input/output package into
the veri�er. Several hours later, he returns. There is his 20,000-line

veri�cation and the message `VERIFIED'."

67

This is parody. In a paper published several years earlier [29], von Henke and

Luckham indicated the true nature of the scenario envisioned by the proponents of
veri�cation when they wrote:

\The goal of practical usefulness does not imply that the veri�cation of
a program must be made independent of creative e�ort on the part of

the programmer : : :such a requirement is utterly unrealistic."

The thrust of De Millo, Lipton and Perlis' argument is that formal veri�cation moves
responsibility away from the \social process" that involves human scrutiny, towards

a mechanical process with little human participation. In reality, a veri�cation system
assists the human user to develop a convincing argument for the correctness of his

program by acting as an implacable skeptic which demands that all assumptions
be stated and all claims justi�ed. The requirement to explicate and formalize what

would otherwise be unexamined assumptions is especially valuable. Shankar [26],
for example, observes:

\The utility of proof-checkers is in clarifying proofs rather than in vali-

dating assertions. The commonly held view of proof-checkers is that they
do more of the latter than the former. In fact, very little of the time
spent with a proof-checker is actually spent proving theorems. Much of

it goes into �nding counterexamples, correcting mistakes, and re�ning
arguments, de�nitions, or statements of theorems. A useful automatic

proof-checker plays the role of a devil's advocate for this purpose."

This perspective on mechanical theorem proving is very similar to that developed by
Lakatos [15] for the role of proof (not just mechanical theorem proving) in mathemat-

ics. Crudely, this view is that successful completion is among the least interesting
and useful outcomes of a proof attempt; the real bene�t comes from failed proof

attempts, since these challenge us to revise our hypotheses, sharpen our statements,
and achieve a deeper understanding of our problem.

Our own experience with the veri�cation of the Interactive Convergence Clock
Synchronization Algorithm supports this view. Most of our time was spent in trying
to prove theorems and lemmas that turned out to be false, in coming to understand

why they were false, and in revising their statements, or those of supporting lem-
mas and assumptions. The di�culties we encountered were consequences of genuine

technical aws in the previously published analysis of the Algorithm [16], and we
consider the main bene�t of this exercise to be the identi�cation and correction of

those aws. The corrections led us to eliminate the use of approximations, thereby
allowing precise statements of the constraints on the values of the parameters to

the Algorithm, and led us to modify one of the assumptions (A2) underlying the
Algorithm, thereby changing its external speci�cation slightly. Our corrections to

the statements and proofs of some of the lemmas led us to a more uniform method

68 Chapter 5. Conclusions

for doing those proofs. When reected back into a traditional mathematical presen-

tation (given in Chapter 2), we consider the result to be an analysis that is not only
more precise, but simpler and easier to follow than the original.

Thus, we believe that a signi�cant bene�t from our formal veri�cation is an im-
proved informal argument for the correctness of the Interactive Convergence Clock

Synchronization Algorithm. We hope that anyone contemplating using the Algo-
rithm will study our presentation and will convince themselves of the correctness of

the Algorithm and of the appropriateness of the assumptions (and of the ability of
their implementation to satisfy those assumptions).

Our formal veri�cation does not usurp the social process in which De Millo,

Lipton and Perlis place their faith, but should serve to shift its focus from details
to fundamentals|i.e., to scrutiny of the de�nitions employed. We note that the
social process apparently failed to discover the aws that we have noted in the main

theorem concerning the Interactive Convergence Clock Synchronization Algorithm,
and in four of its �ve lemmas. This is not surprising: the standards of rigor and

formality in what Barwise [2] calls the \proof sketches" of the normal \mathemat-
ical demonstration" are simply inadequate to the intricacy and detail required for

the analysis of many algorithms and programs. Mechanically checked veri�cation
provides valuable supplementary scrutiny and evidence in these cases.

Mechanical veri�cation does not, however, provide automatic scrutiny of the ad-

equacy of the de�nitions and axioms employed, nor of the utility of the theorems
proved: one can prove true, but useless theorems|useless either because they do not
address the issues of real concern, or because they are predicated on unsatis�able as-

sumptions. The only way to resolve these concerns is through human scrutiny|i.e.,
the social process. Mechanical veri�cation can provide evidence for consideration by

the social process by supporting testing and experimentation with de�nitions and
axioms. For example, models can be exhibited to show that axiomatizations are

satis�able, and test cases can be examined to ensure that de�nitions are \reason-
able." We are considering ways in which a formal veri�cation system such as Ehdm

can provide improved support for these activities.

In addition to these logical properties of our de�nitions, axioms, and theorems,

we also need to consider their realism|i.e., the extent to which they adequately
model real-world behavior. The aspect of the representation of the clock synchro-

nization problem that causes us most concern is the basic de�nition of a clock. Real
clocks increment in discrete \ticks" whose magnitude may be quite large compared

with some of the other parameters in the system. Using the rationals as the interpre-
tation of clock time is therefore unrealistic, as is the requirement that a good clock

should be a strict monotonic function. Schneider [25] presents a formulation of clock
synchronization which treats these aspects more realistically. Our colleague Shankar

has conducted a formal speci�cation and veri�cation of Schneider's formulation [27].

69

A further challenge is to formalize and verify an implementation of the Interac-

tive Convergence Clock Synchronization Algorithm|so far, we have simply veri�ed
properties of the algorithm itself. Our current work is addressing these challenges;
we expect to report our results towards the end of 1991.

Bibliography

[1] Peter B. Andrews. An Introduction to Logic and Type Theory: To Truth through

Proof. Academic press, 1986.

[2] Jon Barwise. Mathematical proofs of computer system correctness. Notices of
the AMS, 36:844{851, September 1989.

[3] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, New

York, 1979.

[4] R.S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,

1988.

[5] Ricky W. Butler. A survey of provably correct fault-tolerant clock synchro-

nization techniques. NASA Technical Memorandum 100553, NASA Langley
Research Center, February 1988.

[6] Ricky W. Butler, Daniel L. Palumbo, and Sally C. Johnson. Application of a

clock synchronization validation methodology to the SIFT computer system. In
Digest of Papers, FTCS 15, pages 194{199, Ann Arbor, MI, June 1985. IEEE
Computer Society.

[7] Ehdm Speci�cation and Veri�cation System Version 4.1|User's Guide. Com-

puter Science Laboratory, SRI International, Menlo Park, CA, November 1988.
See [8] for the updates to Version 5.2.

[8] Ehdm Speci�cation and Veri�cation System Version 5.2|Supplement to User's

and Language Manuals. Computer Science Laboratory, SRI International,

Menlo Park, CA, March 1991. Current version number is 5.2.0.

[9] Flaviu Cristian. Probabilistic clock synchronization. Technical Report RJ 6432,

IBM Almaden Research Center, San Jose, CA, September 1988.

[10] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes and
proofs of theorems and programs. Communications of the ACM, 22(5):271{280,

May 1979.

70

Bibliography 71

[11] D. Dolev, J.Y. Halpern, and H.R. Strong. On the possibility and impossibil-

ity of achieving clock synchronization. In Proceedings of 16th Annual ACM

Symposium on Theory of Computing, pages 504{511, Washington, DC, April
1984.

[12] James H. Fetzer. Program veri�cation: the very idea. Communications of the

ACM, 31(9):1048{1063, September 1988.

[13] Matt Kaufmann. DEFN-SK: An extension of the Boyer-Moore theorem prover

to handle �rst-order quanti�ers. Technical Report 43, Computational Logic
Incorporated, Austin, TX, 1989.

[14] Herman Kopetz and Wilhelm Ochsenreiter. Clock synchronization in dis-

tributed real-time systems. IEEE Transactions on Computers, C-36(8):933{
940, August 1987.

[15] Imre Lakatos. Proofs and Refutations. Cambridge University Press, Cambridge,
England, 1976.

[16] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence of

faults. Journal of the ACM, 32(1):52{78, January 1985.

[17] Leslie Lamport. LaTEX: A Document Preparation System. Addison-Wesley
Publishing Company, Reading, MA, 1985.

[18] Leslie Lamport. Synchronizing time servers. Technical Report 18, DEC Systems

Research Center, Palo Alto, CA, June 1987.

[19] Zohar Manna and Richard Waldinger. The Logical Basis for Computer Pro-

gramming, volume 1: Deductive Reasoning. Addison-Wesley, 1985.

[20] Zohar Manna and Richard Waldinger. The Logical Basis for Computer Pro-

gramming, volume 2: Deductive Systems. Addison-Wesley, 1990.

[21] Peer Review of a Formal Veri�cation/Design Proof Methodology. NASA Con-

ference Publication 2377, July 1983.

[22] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-

tolerant clock synchronization in distributed systems. IEEE Computer,
23(10):33{42, October 1990.

[23] John Rushby. Formal speci�cation and veri�cation of a fault-masking and

transient-recovery model for digital ight-control systems. Technical Report
SRI-CSL-91-3, Computer Science Laboratory, SRI International, Menlo Park,

CA, January 1991. Also NASA Contractor Report 4384.

72 Bibliography

[24] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal

speci�cation and veri�cation using Ehdm. Technical Report SRI-CSL-91-2,
Computer Science Laboratory, SRI International, Menlo Park, CA, February
1991.

[25] Fred B. Schneider. Understanding protocols for Byzantine clock synchroniza-

tion. Technical Report 87-859, Department of Computer Science, Cornell Uni-
versity, Ithaca, NY, August 1987.

[26] N. Shankar. A mechanical proof of the Church-Rosser theorem. Journal of the
ACM, 35(3):475{522, July 1988.

[27] Natarajan Shankar. Mechanical veri�cation of a schematic Byzantine fault-

tolerant clock synchronization algorithm. Technical Report SRI-CSL-91-4,
Computer Science Laboratory, SRI International, Menlo Park, CA, January

1991. Also NASA Contractor Report 4386.

[28] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,

31(1):1{12, January 1984.

[29] F.W. von Henke and D.C. Luckham. A methodology for verifying programs.
In Proceedings, International Conference on Reliable Software, pages 156{164,

Los Angeles, CA, April 1975. IEEE Computer Society.

[30] William D. Young. Verifying the Interactive Convergence clock-synchronization

algorithm using the Boyer-Moore prover. Internal Note 199, Computational
Logic Incorporated, Austin, TX, January 1991.

Appendix A

Cross-Reference Listing

This Appendix provides two cross-reference tables to assist in reading and
navigating the Ehdm speci�cations that follow. The �rst provides the trans-
lations used between Ehdm identi�ers and the symbols used in the traditional
mathematical presentation and in the LaTEX-printed version of the speci�ca-
tions. The second table provides a cross-reference listing to the identi�ers
declared in the Ehdm speci�cation.

Identi�er Translation

abs jaj

adjusted A
(i)
p (T)

clock c?1(?2)

Corr C
(i)
p

D2bar ��
(i)
r;p

delta0 �0

Delta1 �
(i)
p

Delta2 �
(?3)

?1;?2

eps �

half x

2

initial_Corr C0
?1

Identi�er Translation

in_R_interval T 2 R(i)

in_S_interval T 2 S(i)

mean
L

j

i
(F)

rt c
(i)
p (T)

sigma �(i; n; F)

sum
P

j

i
(F)

TN TN
T_sup T (i)

T_ZERO T 0

Table A.1: Translations for Identi�ers Us

73

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

A0 axiom algorithm

A1 formula algorithm

A1_proof prove algorithm

A2 axiom algorithm

A2_aux axiom algorithm

abs de�ned-fn absolutes

abs_ax0 formula absolutes

abs_ax1 formula absolutes

abs_ax2 formula absolutes

abs_ax2b formula absolutes

abs_ax2c formula absolutes

abs_ax3 formula absolutes

abs_ax4 formula absolutes

abs_ax5 formula absolutes

abs_ax6 formula absolutes

abs_ax7 formula absolutes

abs_ax8 formula absolutes

abs_div formula absolutes

abs_div2 formula absolutes

abs_div2_proof prove absolutes

abs_div2_TCC1 formula absolutes_tcc

abs_div2_TCC1_PROOF prove absolutes_tcc

abs_div_proof prove absolutes

abs_mean formula sums

abs_mean_proof prove sums

absolutes module absolutes

absolutes_tcc module absolutes_tcc

abs_proof0 prove absolutes

abs_proof1 prove absolutes

abs_proof2 prove absolutes

abs_proof2b prove absolutes

abs_proof2c prove absolutes

abs_proof3 prove absolutes

abs_proof4 prove absolutes

Identi�er Declaration

abs_proof5 prove
abs_proof6 prove

abs_proof7 prove

abs_proof8 prove
abs_recip formula

abs_recip_proof prove

abs_recip_proof_TCC1 formula

abs_recip_proof_TCC1_PROOF prove

abs_recip_TCC1 formula
abs_recip_TCC1_PROOF prove

abs_recip_TCC2 formula

abs_recip_TCC2_PROOF prove
abs_recip_TCC2_PROOF prove

abs_sum formula

abs_sum_proof prove
abs_times formula

abs_times_proof prove

adj_always_pos formula
adj_pos_proof prove

adjusted literal-fn

algorithm module

algorithm_tcc module

alt_sb_step_proof prove

alt_sigma_bound_one_step formula

alt_sigma_bound_one_step_proof prove

alt_sigma_bound_step formula

arithmetics module

arithmetics_tcc module

basis formula

basis formula
basis_proof prove

basis_proof prove

bounded de�ned-fn
bounded_lemma formula

bounded_proof prove

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

bound_faulty formula summations

bound_faulty_proof prove summations

bound_nonfaulty formula summations

bound_nonfaulty_proof prove summations

bounds formula clockprops

bounds_proof prove clockprops

C0 axiom algorithm

C1 axiom time

C2 axiom algorithm

C2and3 formula algorithm

C2and3_proof prove algorithm

C3 axiom algorithm

C4 axiom algorithm

C5 axiom algorithm

C6 axiom algorithm

C6_TCC1 formula algorithm_tcc

C6_TCC1_PROOF prove algorithm_tcc

C6_TCC1_PROOF prove top

clock function clocks

clock_proof prove algorithm

clock_prop formula algorithm

clockprops module clockprops

clocks module clocks

clocktime type time

Corr recursive-fn algorithm

Corr_TCC1 formula algorithm_tcc

Corr_TCC1_PROOF prove algorithm_tcc

culmination formula summations

culmination_TCC1 formula summations_tcc

culmination_TCC1_PROOF prove summations_tcc

culmination_TCC1_PROOF prove top

culm_proof prove summations

curry de�ned-fn natinduction

D2bar de�ned-fn algorithm

D2bar_prop formula algorithm

Identi�er Declaration Module

D2bar_prop_proof prove algorithm

Delta const algorithm

delta const algorithm

delta0 const algorithm

Delta1 de�ned-fn algorithm

Delta2 function algorithm

diff de�ned-fn natprops

diff1 formula natprops

diff1_proof prove natprops

diff_diff formula natprops

diff_diff_proof prove natprops

diff_ineq formula natprops

diff_ineq_proof prove natprops

diff_plus formula natprops

diff_plus_proof prove natprops

diff_TCC1 formula natprops_t

diff_TCC1_PROOF prove natprops_t

diff_zero formula natprops

diff_zero_proof prove natprops

diminish formula clocks

diminish_proof prove clocks

discharge prove natinducti

div_mon formula arithmetic

div_mon2 formula arithmetic

div_mon2_proof prove arithmetic

div_mon2_TCC1 formula arithmetic

div_mon2_TCC1_PROOF prove arithmetic

div_mon_proof prove arithmetic

div_mon_TCC1 formula arithmetic

div_mon_TCC1_PROOF prove arithmetic

div_mult formula arithmetic

div_mult_proof prove arithmetic

div_mult_TCC1 formula arithmetic

div_mult_TCC1_PROOF prove arithmetic

eps const algorithm

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

extensionality axiom functionprops

final prove juggle

fraction subtype-with numeric_types

fraction_TCC1 formula numeric_types_tcc

fraction_TCC1_PROOF prove numeric_types_tcc

fraction_TCC1_PROOF prove numeric_types_tcc_proofs

functionprops module functionprops

gc_proof prove clockprops

gc_prop formula clockprops

general_induction axiom noetherian

goodclock de�ned-fn clocks

half literal-fn arithmetics

half_TCC1 formula arithmetics_tcc

half_TCC1_PROOF prove arithmetics_tcc

i2R formula clockprops

i2R_proof prove clockprops

identity literal-fn natinduction

ind_m_proof prove natinduction

ind_m_proof_TCC1 formula natinduction_tcc

ind_m_proof_TCC1_PROOF prove natinduction_tcc

ind_proof prove clockprops

ind_proof prove main

ind_proof prove natinduction

ind_step formula main

induction formula natinduction

induction1 formula natinduction

induction1_proof prove natinduction

induction2 formula natinduction

induction2_proof prove natinduction

induction_m formula natinduction

inductive_step formula clockprops

initial_Corr function algorithm

in_R_interval de�ned-fn time

inRS formula time

inRS_proof prove time

Identi�er Declaration Module

in_S_interval de�ned-fn time

in_S_lemma formula time

in_S_proof prove time

instance module natinduction

juggle module juggle

juggle_tcc module juggle_tcc

l1 formula summations

l1_proof prove summations

l2 formula summations

l2_proof prove summations

l2_TCC1 formula summations_tcc

l2_TCC1_PROOF prove summations_tcc

l2_TCC1_PROOF prove top

l3 formula summations

l3_proof prove summations

l4 formula summations

l4_proof prove summations

l5 formula summations

l5_proof prove summations

l5_TCC1 formula summations_tcc

l5_TCC1_PROOF prove summations_tcc

l5_TCC1_PROOF prove top

lemma1 module lemma1

lemma1def formula lemma1

lemma1_proof prove lemma1

lemma2 module lemma2

lemma2a formula lemma2

lemma2a_proof prove lemma2

lemma2b formula lemma2

lemma2b_proof prove lemma2

lemma2c formula lemma2

lemma2c_proof prove lemma2

lemma2d formula lemma2

lemma2def formula lemma2

lemma2d_proof prove lemma2

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

lemma2_proof prove lemma2

lemma2x formula lemma4

lemma2x_proof prove lemma4

lemma3 module lemma3

lemma3def formula lemma3

lemma3_proof prove lemma3

lemma4 module lemma4

lemma4def formula lemma4

lemma4_proof prove lemma4

lemma5 module lemma5

lemma5def formula lemma5

lemma5proof prove lemma5

lemma6 module lemma6

lemma6def formula lemma6

lemma6_proof prove lemma6

lower_bound formula clockprops

lower_bound2 formula clockprops

lower_bound2_proof prove clockprops

lower_bound_proof prove clockprops

m const algorithm

main module main

mean de�ned-fn sums

mean_bound formula sums

mean_bound_proof prove sums

mean_const formula sums

mean_const_proof prove sums

mean_diff formula sums

mean_diff_proof prove sums

mean_lemma formula sums

mean_lemma_proof prove sums

mean_mult formula sums

mean_mult_proof prove sums

mean_sum formula sums

mean_sum_proof prove sums

mean_TCC1 formula sums_tcc

Identi�er Declaration Module

mean_TCC1_PROOF prove sums_tcc

middle literal-fn sigmaprop

mod_induction formula natinduct

mod_induction1 formula natinduct

mod_induction1_proof prove natinduct

mod_induction_m formula natinduct

mod_induction_proof prove natinduct

mod_m_proof prove natinduct

mod_sigma_mult formula sigmaprop

mod_sigma_mult_proof prove sigmaprop

monoproof prove clocks

monotonicity formula clocks

mult_div formula juggle

mult_div_proof prove juggle

mult_div_TCC1 formula juggle_tc

mult_div_TCC1_PROOF prove juggle_tc

mult_mon formula arithmeti

mult_mon2 formula arithmeti

mult_mon2_proof prove arithmeti

mult_mon_proof prove arithmeti

mult_pos axiom arithmeti

mult_pos_alt formula arithmeti

mult_pos_alt_proof prove arithmeti

n const algorithm

natinduction module natinduct

natinduction_tcc module natinduct

natprops module natprops

natprops_tcc module natprops_

noetherian module noetheria

nonfaulty de�ned-fn algorithm

nonfx formula clockprop

npos formula algorithm

npos_proof prove algorithm

numeric_types module numeric_t

numeric_types_tcc module numeric_t

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

numeric_types_tcc_proofs module numeric_types_tcc_proofs

period type time

pos_abs formula absolutes

pos_abs_proof prove absolutes

posclocktime type time

posint subtype-with numeric_types

posint_TCC1 formula numeric_types_tcc

posint_TCC1_PROOF prove numeric_types_tcc

posint_TCC1_PROOF prove numeric_types_tcc_proofs

posnum subtype-with numeric_types

posnum_TCC1 formula numeric_types_tcc

posnum_TCC1_PROOF prove numeric_types_tcc

posnum_TCC1_PROOF prove numeric_types_tcc_proofs

posR formula time

posrealtime type time

posR_proof prove time

posS formula time

posS_proof prove time

pred_diff formula natprops

pred_diff_proof prove natprops

prev literal-fn natinduction

proc type clocks

quotient_pos formula arithmetics

quotient_pos_proof prove arithmetics

quotient_pos_proof_TCC1 formula arithmetics_tcc

quotient_pos_proof_TCC1_PROOF prove arithmetics_tcc

quotient_pos_TCC1 formula arithmetics_tcc

quotient_pos_TCC1_PROOF prove arithmetics_tcc

R const time

realtime type time

rearrange formula absolutes

rearrange1 formula absolutes

rearrange1 formula lemma4

rearrange1 formula lemma5

rearrange1_proof prove absolutes

Identi�er Declaration Mo

rearrange1_proof prove lem

rearrange1_proof prove lem

rearrange2 formula abs

rearrange2 formula lem

rearrange2 formula lem

rearrange2_proof prove abs

rearrange2_proof prove lem

rearrange2_proof prove lem

rearrange3 formula lem

rearrange3_proof prove lem

rearrange_alt formula abs

rearrange_alt_proof prove abs

rearrange_delta formula jug

rearrange_delta_TCC1 formula jug

rearrange_delta_TCC1_PROOF prove jug

rearrange_delta_TCC1_PROOF prove top

rearrange_delta_TCC2 formula jug

rearrange_delta_TCC2_PROOF prove jug

rearrange_delta_TCC2_PROOF prove top

rearrange_proof prove abs

rearrange_sub formula sum

rearrange_sub_proof prove sum

rearrange_sum formula sum

rearrange_sum_proof prove sum

revsigma recursive-fn sig

revsigma_TCC1 formula sig

revsigma_TCC1_PROOF prove sig

rho const clo

rho_pos formula clo

rho_small formula clo

rmproof prove clo

rt de�ned-fn alg

S const tim

S1 de�ned-fn alg

S1A de�ned-fn alg

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

S1A_lemma formula clockprops

S1A_lemma_proof prove clockprops

s1b_proof prove sigmaprops

S1C de�ned-fn algorithm

S1C_lemma formula algorithm

S1C_lemma_proof prove algorithm

s1s_proof prove sigmaprops

S2 de�ned-fn algorithm

S2_pqr formula summations

S2_pqr_proof prove summations

sa_basis_proof prove sigmaprops

sa_proof prove sigmaprops

sa_step_proof prove sigmaprops

sb formula sigmaprops

sb_basis_proof prove sigmaprops

sb_proof prove sigmaprops

sb_step_proof prove sigmaprops

sc_basis_proof prove sigmaprops

sc_proof prove sigmaprops

sc_step_proof prove sigmaprops

second_arg literal-fn algorithm

Sigma const algorithm

sigma recursive-fn sigmaprops

sigma1 formula sigmaprops

sigma1_basis formula sigmaprops

sigma1_proof prove sigmaprops

sigma1_step formula sigmaprops

sigma_abs formula sigmaprops

sigma_abs_basis formula sigmaprops

sigma_abs_step formula sigmaprops

sigma_bound formula sigmaprops

sigma_bound_basis formula sigmaprops

sigma_bound_proof prove sigmaprops

sigma_bound_step formula sigmaprops

sigma_const formula sigmaprops

Identi�er Declaration Module

sigma_const_basis formula sigmapro

sigma_const_step formula sigmapro

sigma_mult formula sigmapro

sigma_mult_basis formula sigmapro

sigma_mult_step formula sigmapro

sigmaprops module sigmapro

sigmaprops_tcc module sigmapro

sigma_rev formula sigmapro

sigma_rev_basis formula sigmapro

sigma_rev_proof prove sigmapro

sigma_rev_step formula sigmapro

sigma_split formula sigmapro

sigma_split_proof prove sigmapro

sigma_sum formula sigmapro

sigma_sum_basis formula sigmapro

sigma_sum_step formula sigmapro

sigma_TCC1 formula sigmapro

sigma_TCC1_PROOF prove sigmapro

SinR formula time

SinR_proof prove time

skew literal-fn algorith

small_shift formula clockpro

small_shift_proof prove clockpro

sm_basis_proof prove sigmapro

sm_proof prove sigmapro

sm_step_proof prove sigmapro

split_basis_proof prove sigmapro

split_mean formula sums

split_mean_proof prove sums

split_mean_TCC1 formula sums_tcc

split_mean_TCC1_PROOF prove sums_tcc

split_proof prove sigmapro

split_sigma formula sigmapro

split_sigma_basis formula sigmapro

split_sigma_step formula sigmapro

Appendix A. Cross-Reference Listing

Identi�er Declaration Module

split_step_proof prove sigmaprops

split_sum formula sums

split_sum_proof prove sums

srb_proof prove sigmaprops

srp_proof prove sigmaprops

ss_basis_proof prove sigmaprops

ss_proof prove sigmaprops

ss_step_proof prove sigmaprops

step1 formula juggle

step1_proof prove juggle

step2 formula juggle

step2_proof prove juggle

step2_TCC1 formula juggle_tcc

step2_TCC1_PROOF prove juggle_tcc

step2_TCC1_PROOF prove top

sub1_proof prove lemma6

sub2_proof prove lemma6

sub_A_proof prove lemma6

sublemma1 formula lemma4

sublemma1 formula lemma6

sublemma1_proof prove lemma4

sublemma2 formula lemma6

sublemma_A formula lemma6

sum de�ned-fn sums

sum_bound formula sums

sum_bound0 formula sums

sum_bound0_proof prove sums

sum_bound_mod formula sums

sum_bound_mod_proof prove sums

sum_bound_proof prove sums

summations module summations

summations_tcc module summations_tcc

sum_mult formula sums

sum_mult_proof prove sums

sums module sums

Identi�er Declaration Module

sums_tcc module sums_tcc

Theorem_1 formula algorithm

Theorem_1_proof prove main

Theorem_2 formula algorithm

Theorem_2_proof prove algorithm

Ti_in_R formula time

Ti_in_S formula time

Ti_in_S_proof prove time

time module time

Ti_proof prove time

T_next formula time

T_next_proof prove time

top module top

T_sup de�ned-fn time

T_ZERO const time

upper_bound formula clockprops

upper_bound_proof prove clockprops

well_founded formula noetherian

Table A.2: Ehdm Identifers used in

Appendix B

Proof-Chain Analysis

This Appendix reproduces the output from the Ehdm Proof-Chain Ana-
lyzer for the two Theorems proved in the speci�cation.

B.1 Clock Synchronization Condition S1

The terse proof chain for Theorem 1 in the speci�cation is given below in full.
It can be seen that the proof chain is complete.

Terse proof chain for formula Theorem_1 in module algorithm

Use of the formula

algorithm.Theorem_1

requires the following TCCs to be proven

algorithm_tcc.Corr_TCC1

algorithm_tcc.C6_TCC1

Formula algorithm_tcc.Corr_TCC1 is a termination TCC for

algorithm.Corr

Proof of

algorithm_tcc.Corr_TCC1

must not use

algorithm.Corr

Use of the formula

absolutes.rearrange_alt

requires the following TCCs to be proven

absolutes_tcc.abs_recip_TCC1

absolutes_tcc.abs_recip_TCC2

absolutes_tcc.abs_div2_TCC1

absolutes_tcc.abs_recip_proof_TCC1

Use of the formula

numeric_types.posnum_invariant

requires the following TCCs to be proven

numeric_types_tcc.posint_TCC1

numeric_types_tcc.posnum_TCC1

numeric_types_tcc.fraction_TCC1

Use of the formula

natinduction.induction

requires the following TCCs to be proven

natinduction_tcc.ind_m_proof_TCC1

Use of the formula

noetherian[naturalnumber, natinduction

requires the following assumptions to be

81

Appendix B. Proof-Chain Analysis

noetherian[naturalnumber, natinduction.prev].well_founded

Use of the formula

sums.mean_bound

requires the following TCCs to be proven

sums_tcc.mean_TCC1

sums_tcc.split_mean_TCC1

Use of the formula

sigmaprops.sigma_bound

requires the following TCCs to be proven

sigmaprops_tcc.sigma_TCC1

sigmaprops_tcc.revsigma_TCC1

Formula sigmaprops_tcc.sigma_TCC1 is a termination TCC for

sigmaprops.sigma

Proof of

sigmaprops_tcc.sigma_TCC1

must not use

sigmaprops.sigma

Formula sigmaprops_tcc.revsigma_TCC1 is a termination TCC for

sigmaprops.revsigma

Proof of

sigmaprops_tcc.revsigma_TCC1

must not use

sigmaprops.revsigma

Use of the formula

natprops.diff

requires the following TCCs to be proven

natprops_tcc.diff_TCC1

Use of the formula

arithmetics.div_mult

requires the following TCCs to be proven

arithmetics_tcc.half_TCC1

arithmetics_tcc.quotient_pos_TCC1

arithmetics_tcc.div_mult_TCC1

arithmetics_tcc.div_mon_TCC1

arithmetics_tcc.div_mon2_TCC1

arithmetics_tcc.quotient_pos_proof_TCC1

Use of the formula

summations.culmination

requires the following TCCs to be proven

summations_tcc.culmination_TCC1

summations_tcc.l2_TCC1

summations_tcc.l5_TCC1

Use of the formula

juggle.rearrange_delta

requires the following TCCs to be proven

juggle_tcc.rearrange_delta_TCC1

juggle_tcc.rearrange_delta_TCC2

juggle_tcc.mult_div_TCC1

juggle_tcc.step2_TCC1

================== SUMMARY ===========

The proof chain is complete

The axioms and assumptions at the base ar

algorithm.A0

algorithm.A2

algorithm.A2_aux

algorithm.C0

algorithm.C2

algorithm.C3

algorithm.C4

algorithm.C5

algorithm.C6

Appendix B. Proof-Chain Analysis

arithmetics.mult_pos

functionprops[EXPR, EXPR].extensionality

noetherian[EXPR, EXPR].general_induction

time.C1

Total: 13

The definitions and type-constraints are:

absolutes.abs

algorithm.Corr

algorithm.D2bar

algorithm.Delta1

algorithm.S1

algorithm.S1A

algorithm.S1C

algorithm.S2

algorithm.nonfaulty

algorithm.rt

clocks.goodclock

natinduction.curry

natprops.diff

naturalnumbers.nat_invariant

numeric_types.fraction_invariant

numeric_types.posnum_invariant

sigmaprops.bounded

sigmaprops.revsigma

sigmaprops.sigma

sums.mean

sums.sum

time.T_sup

time.in_R_interval

time.in_S_interval

Total: 24

The formulae used are:

absolutes.abs_ax0

absolutes.abs_ax1

absolutes.abs_ax2

absolutes.abs_ax2b

absolutes.abs_ax2c

absolutes.abs_ax3

absolutes.abs_ax4

absolutes.abs_ax5

absolutes.abs_ax6

absolutes.abs_ax8

absolutes.abs_div

absolutes.abs_div2

absolutes.abs_recip

absolutes.abs_times

absolutes.pos_abs

absolutes.rearrange

absolutes.rearrange1

absolutes.rearrange2

absolutes.rearrange_alt

absolutes_tcc.abs_div2_TCC1

absolutes_tcc.abs_recip_TCC1

absolutes_tcc.abs_recip_TCC2

absolutes_tcc.abs_recip_proof_TCC1

algorithm.A1

algorithm.C2and3

algorithm.D2bar_prop

algorithm.S1C_lemma

algorithm.Theorem_1

algorithm.Theorem_2

algorithm.clock_prop

algorithm.npos

algorithm_tcc.C6_TCC1

algorithm_tcc.Corr_TCC1

arithmetics.div_mon

arithmetics.div_mon2

arithmetics.div_mult

arithmetics.mult_mon

arithmetics.mult_mon2

Appendix B. Proof-Chain Analysis

arithmetics.mult_pos_alt

arithmetics.quotient_pos

arithmetics_tcc.div_mon2_TCC1

arithmetics_tcc.div_mon_TCC1

arithmetics_tcc.div_mult_TCC1

arithmetics_tcc.half_TCC1

arithmetics_tcc.quotient_pos_TCC1

arithmetics_tcc.quotient_pos_proof_TCC1

clockprops.S1A_lemma

clockprops.adj_always_pos

clockprops.basis

clockprops.bounds

clockprops.gc_prop

clockprops.i2R

clockprops.inductive_step

clockprops.lower_bound

clockprops.lower_bound2

clockprops.nonfx

clockprops.small_shift

clockprops.upper_bound

clocks.rho_pos

juggle.mult_div

juggle.rearrange_delta

juggle.step1

juggle.step2

juggle_tcc.mult_div_TCC1

juggle_tcc.rearrange_delta_TCC1

juggle_tcc.rearrange_delta_TCC2

juggle_tcc.step2_TCC1

lemma1.lemma1def

lemma2.lemma2a

lemma2.lemma2b

lemma2.lemma2c

lemma2.lemma2d

lemma2.lemma2def

lemma3.lemma3def

lemma4.lemma2x

lemma4.lemma4def

lemma4.rearrange1

lemma4.rearrange2

lemma4.rearrange3

lemma4.sublemma1

lemma5.lemma5def

lemma5.rearrange1

lemma5.rearrange2

lemma6.lemma6def

lemma6.sublemma1

lemma6.sublemma2

lemma6.sublemma_A

main.basis

main.ind_step

natinduction.induction

natinduction.induction2

natinduction.induction_m

natinduction.mod_induction1

natinduction.mod_induction_m

natinduction_tcc.ind_m_proof_TCC1

natprops.diff_diff

natprops.diff_ineq

natprops.diff_plus

natprops.pred_diff

natprops_tcc.diff_TCC1

noetherian[naturalnumber, natinduction

numeric_types_tcc.fraction_TCC1

numeric_types_tcc.posint_TCC1

numeric_types_tcc.posnum_TCC1

sigmaprops.alt_sigma_bound_one_step

sigmaprops.alt_sigma_bound_step

sigmaprops.bounded_lemma

sigmaprops.mod_sigma_mult

sigmaprops.sb

sigmaprops.sigma1

Appendix B. Proof-Chain Analysis

sigmaprops.sigma1_basis

sigmaprops.sigma1_step

sigmaprops.sigma_abs

sigmaprops.sigma_abs_basis

sigmaprops.sigma_abs_step

sigmaprops.sigma_bound

sigmaprops.sigma_bound_basis

sigmaprops.sigma_bound_step

sigmaprops.sigma_const

sigmaprops.sigma_const_basis

sigmaprops.sigma_const_step

sigmaprops.sigma_mult

sigmaprops.sigma_mult_basis

sigmaprops.sigma_mult_step

sigmaprops.sigma_rev

sigmaprops.sigma_rev_basis

sigmaprops.sigma_rev_step

sigmaprops.sigma_split

sigmaprops.sigma_sum

sigmaprops.sigma_sum_basis

sigmaprops.sigma_sum_step

sigmaprops.split_sigma

sigmaprops.split_sigma_basis

sigmaprops.split_sigma_step

sigmaprops_tcc.revsigma_TCC1

sigmaprops_tcc.sigma_TCC1

summations.S2_pqr

summations.bound_faulty

summations.bound_nonfaulty

summations.culmination

summations.l1

summations.l2

summations.l3

summations.l4

summations.l5

summations_tcc.culmination_TCC1

summations_tcc.l2_TCC1

summations_tcc.l5_TCC1

sums.abs_mean

sums.abs_sum

sums.mean_bound

sums.mean_const

sums.mean_diff

sums.mean_lemma

sums.mean_mult

sums.mean_sum

sums.rearrange_sub

sums.rearrange_sum

sums.split_mean

sums.split_sum

sums.sum_bound

sums.sum_bound0

sums.sum_bound_mod

sums.sum_mult

sums_tcc.mean_TCC1

sums_tcc.split_mean_TCC1

time.SinR

time.T_next

time.Ti_in_S

time.inRS

time.in_S_lemma

time.posR

time.posS

Total: 173

The completed proofs are:

absolutes.abs_div2_proof

absolutes.abs_div_proof

absolutes.abs_proof0

absolutes.abs_proof1

absolutes.abs_proof2

absolutes.abs_proof2b

Appendix B. Proof-Chain Analysis

absolutes.abs_proof2c

absolutes.abs_proof3

absolutes.abs_proof4

absolutes.abs_proof5

absolutes.abs_proof6

absolutes.abs_proof8

absolutes.abs_recip_proof

absolutes.abs_times_proof

absolutes.pos_abs_proof

absolutes.rearrange1_proof

absolutes.rearrange2_proof

absolutes.rearrange_alt_proof

absolutes.rearrange_proof

absolutes_tcc.abs_div2_TCC1_PROOF

absolutes_tcc.abs_recip_TCC1_PROOF

absolutes_tcc.abs_recip_proof_TCC1_PROOF

algorithm.A1_proof

algorithm.C2and3_proof

algorithm.D2bar_prop_proof

algorithm.S1C_lemma_proof

algorithm.Theorem_2_proof

algorithm.clock_proof

algorithm.npos_proof

algorithm_tcc.Corr_TCC1_PROOF

arithmetics.div_mon2_proof

arithmetics.div_mon_proof

arithmetics.div_mult_proof

arithmetics.mult_mon2_proof

arithmetics.mult_mon_proof

arithmetics.mult_pos_alt_proof

arithmetics.quotient_pos_proof

arithmetics_tcc.div_mon2_TCC1_PROOF

arithmetics_tcc.div_mon_TCC1_PROOF

arithmetics_tcc.div_mult_TCC1_PROOF

arithmetics_tcc.half_TCC1_PROOF

arithmetics_tcc.quotient_pos_TCC1_PROOF

arithmetics_tcc.quotient_pos_proof_TCC1

clockprops.S1A_lemma_proof

clockprops.adj_pos_proof

clockprops.basis_proof

clockprops.bounds_proof

clockprops.gc_proof

clockprops.i2R_proof

clockprops.ind_proof

clockprops.lower_bound2_proof

clockprops.lower_bound_proof

clockprops.rmproof

clockprops.small_shift_proof

clockprops.upper_bound_proof

clocks.rho_pos_proof

juggle.final

juggle.mult_div_proof

juggle.step1_proof

juggle.step2_proof

juggle_tcc.mult_div_TCC1_PROOF

lemma1.lemma1_proof

lemma2.lemma2_proof

lemma2.lemma2a_proof

lemma2.lemma2b_proof

lemma2.lemma2c_proof

lemma2.lemma2d_proof

lemma3.lemma3_proof

lemma4.lemma2x_proof

lemma4.lemma4_proof

lemma4.rearrange1_proof

lemma4.rearrange2_proof

lemma4.rearrange3_proof

lemma4.sublemma1_proof

lemma5.lemma5proof

lemma5.rearrange1_proof

lemma5.rearrange2_proof

lemma6.lemma6_proof

Appendix B. Proof-Chain Analysis

lemma6.sub1_proof

lemma6.sub2_proof

lemma6.sub_A_proof

main.Theorem_1_proof

main.basis_proof

main.ind_proof

natinduction.discharge

natinduction.ind_m_proof

natinduction.ind_proof

natinduction.induction2_proof

natinduction.mod_induction1_proof

natinduction.mod_m_proof

natinduction_tcc.ind_m_proof_TCC1_PROOF

natprops.diff_diff_proof

natprops.diff_ineq_proof

natprops.diff_plus_proof

natprops.pred_diff_proof

natprops_tcc.diff_TCC1_PROOF

numeric_types_tcc_proofs.fraction_TCC1_PROOF

numeric_types_tcc_proofs.posint_TCC1_PROOF

numeric_types_tcc_proofs.posnum_TCC1_PROOF

sigmaprops.alt_sb_step_proof

sigmaprops.alt_sigma_bound_one_step_proof

sigmaprops.bounded_proof

sigmaprops.mod_sigma_mult_proof

sigmaprops.s1b_proof

sigmaprops.s1s_proof

sigmaprops.sa_basis_proof

sigmaprops.sa_proof

sigmaprops.sa_step_proof

sigmaprops.sb_basis_proof

sigmaprops.sb_proof

sigmaprops.sb_step_proof

sigmaprops.sc_basis_proof

sigmaprops.sc_proof

sigmaprops.sc_step_proof

sigmaprops.sigma1_proof

sigmaprops.sigma_bound_proof

sigmaprops.sigma_rev_proof

sigmaprops.sigma_split_proof

sigmaprops.sm_basis_proof

sigmaprops.sm_proof

sigmaprops.sm_step_proof

sigmaprops.split_basis_proof

sigmaprops.split_proof

sigmaprops.split_step_proof

sigmaprops.srb_proof

sigmaprops.srp_proof

sigmaprops.ss_basis_proof

sigmaprops.ss_proof

sigmaprops.ss_step_proof

sigmaprops_tcc.revsigma_TCC1_PROOF

sigmaprops_tcc.sigma_TCC1_PROOF

summations.S2_pqr_proof

summations.bound_faulty_proof

summations.bound_nonfaulty_proof

summations.culm_proof

summations.l1_proof

summations.l2_proof

summations.l3_proof

summations.l4_proof

summations.l5_proof

sums.abs_mean_proof

sums.abs_sum_proof

sums.mean_bound_proof

sums.mean_const_proof

sums.mean_diff_proof

sums.mean_lemma_proof

sums.mean_mult_proof

sums.mean_sum_proof

sums.rearrange_sub_proof

sums.rearrange_sum_proof

Appendix B. Proof-Chain Analysis

sums.split_mean_proof

sums.split_sum_proof

sums.sum_bound0_proof

sums.sum_bound_mod_proof

sums.sum_bound_proof

sums.sum_mult_proof

sums_tcc.mean_TCC1_PROOF

sums_tcc.split_mean_TCC1_PROOF

time.SinR_proof

time.T_next_proof

time.Ti_in_S_proof

time.inRS_proof

time.in_S_proof

time.posR_proof

time.posS_proof

top.C6_TCC1_PROOF

top.abs_recip_TCC2_PROOF

top.culmination_TCC1_PROOF

top.l2_TCC1_PROOF

top.l5_TCC1_PROOF

top.rearrange_delta_TCC1_PROOF

top.rearrange_delta_TCC2_PROOF

top.step2_TCC1_PROOF

Total: 173

B.2 Clock Synchronization Condition S2

The terse proof chain for Theorem 2 in the speci�cation is given below in full.
It can be seen that the proof chain is complete.

Terse proof chain for formula Theorem_2 in module algorithm

Use of the formula

algorithm.Theorem_2

requires the following TCCs to be proven

algorithm_tcc.Corr_TCC1

algorithm_tcc.C6_TCC1

Formula algorithm_tcc.Corr_TCC1 is a term

algorithm.Corr

Proof of

algorithm_tcc.Corr_TCC1

must not use

algorithm.Corr

Use of the formula

absolutes.abs_ax0

requires the following TCCs to be proven

absolutes_tcc.abs_recip_TCC1

absolutes_tcc.abs_recip_TCC2

absolutes_tcc.abs_div2_TCC1

absolutes_tcc.abs_recip_proof_TCC1

Use of the formula

sums.mean_bound

requires the following TCCs to be proven

sums_tcc.mean_TCC1

sums_tcc.split_mean_TCC1

Use of the formula

sigmaprops.sigma_bound

requires the following TCCs to be proven

sigmaprops_tcc.sigma_TCC1

sigmaprops_tcc.revsigma_TCC1

Formula sigmaprops_tcc.sigma_TCC1 is a te

sigmaprops.sigma

Proof of

sigmaprops_tcc.sigma_TCC1

must not use

Appendix B. Proof-Chain Analysis

sigmaprops.sigma

Formula sigmaprops_tcc.revsigma_TCC1 is a termination TCC for

sigmaprops.revsigma

Proof of

sigmaprops_tcc.revsigma_TCC1

must not use

sigmaprops.revsigma

Use of the formula

natinduction.mod_induction1

requires the following TCCs to be proven

natinduction_tcc.ind_m_proof_TCC1

Use of the formula

noetherian[naturalnumber, natinduction.prev].general_induction

requires the following assumptions to be discharged

noetherian[naturalnumber, natinduction.prev].well_founded

Use of the formula

natprops.diff

requires the following TCCs to be proven

natprops_tcc.diff_TCC1

Use of the formula

arithmetics.div_mult

requires the following TCCs to be proven

arithmetics_tcc.half_TCC1

arithmetics_tcc.quotient_pos_TCC1

arithmetics_tcc.div_mult_TCC1

arithmetics_tcc.div_mon_TCC1

arithmetics_tcc.div_mon2_TCC1

arithmetics_tcc.quotient_pos_proof_TCC1

================== SUMMARY ==================

The proof chain is complete

The axioms and assumptions at the base ar

algorithm.C0

algorithm.C3

arithmetics.mult_pos

noetherian[EXPR, EXPR].general_inductio

Total: 4

The definitions and type-constraints are

absolutes.abs

algorithm.Corr

algorithm.D2bar

algorithm.Delta1

algorithm.S2

natprops.diff

naturalnumbers.nat_invariant

sigmaprops.bounded

sigmaprops.sigma

sums.mean

sums.sum

Total: 11

The formulae used are:

absolutes.abs_ax0

absolutes.abs_ax2

absolutes.abs_div

absolutes.abs_div2

absolutes.abs_recip

absolutes.abs_times

absolutes.pos_abs

absolutes_tcc.abs_div2_TCC1

absolutes_tcc.abs_recip_TCC1

absolutes_tcc.abs_recip_TCC2

absolutes_tcc.abs_recip_proof_TCC1

algorithm.D2bar_prop

Appendix B. Proof-Chain Analysis

algorithm.Theorem_2

algorithm_tcc.C6_TCC1

algorithm_tcc.Corr_TCC1

arithmetics.div_mon

arithmetics.div_mon2

arithmetics.div_mult

arithmetics.mult_mon

arithmetics.quotient_pos

arithmetics_tcc.div_mon2_TCC1

arithmetics_tcc.div_mon_TCC1

arithmetics_tcc.div_mult_TCC1

arithmetics_tcc.half_TCC1

arithmetics_tcc.quotient_pos_TCC1

arithmetics_tcc.quotient_pos_proof_TCC1

natinduction.induction

natinduction.induction_m

natinduction.mod_induction1

natinduction.mod_induction_m

natinduction_tcc.ind_m_proof_TCC1

natprops_tcc.diff_TCC1

noetherian[naturalnumber, natinduction.prev].well_founded

sigmaprops.alt_sigma_bound_one_step

sigmaprops.alt_sigma_bound_step

sigmaprops.bounded_lemma

sigmaprops.sb

sigmaprops.sigma_abs

sigmaprops.sigma_abs_basis

sigmaprops.sigma_abs_step

sigmaprops.sigma_bound

sigmaprops.sigma_bound_basis

sigmaprops.sigma_bound_step

sigmaprops.sigma_split

sigmaprops_tcc.revsigma_TCC1

sigmaprops_tcc.sigma_TCC1

sums.abs_mean

sums.abs_sum

sums.mean_bound

sums.sum_bound_mod

sums_tcc.mean_TCC1

sums_tcc.split_mean_TCC1

Total: 52

The completed proofs are:

absolutes.abs_div2_proof

absolutes.abs_div_proof

absolutes.abs_proof0

absolutes.abs_proof2

absolutes.abs_recip_proof

absolutes.abs_times_proof

absolutes.pos_abs_proof

absolutes_tcc.abs_div2_TCC1_PROOF

absolutes_tcc.abs_recip_TCC1_PROOF

absolutes_tcc.abs_recip_proof_TCC1_PROO

algorithm.D2bar_prop_proof

algorithm.Theorem_2_proof

algorithm_tcc.Corr_TCC1_PROOF

arithmetics.div_mon2_proof

arithmetics.div_mon_proof

arithmetics.div_mult_proof

arithmetics.mult_mon_proof

arithmetics.quotient_pos_proof

arithmetics_tcc.div_mon2_TCC1_PROOF

arithmetics_tcc.div_mon_TCC1_PROOF

arithmetics_tcc.div_mult_TCC1_PROOF

arithmetics_tcc.half_TCC1_PROOF

arithmetics_tcc.quotient_pos_TCC1_PROOF

arithmetics_tcc.quotient_pos_proof_TCC1

natinduction.discharge

natinduction.ind_m_proof

natinduction.ind_proof

natinduction.mod_induction1_proof

natinduction.mod_m_proof

Appendix B. Proof-Chain Analysis

natinduction_tcc.ind_m_proof_TCC1_PROOF

natprops_tcc.diff_TCC1_PROOF

sigmaprops.alt_sb_step_proof

sigmaprops.alt_sigma_bound_one_step_proof

sigmaprops.bounded_proof

sigmaprops.sa_basis_proof

sigmaprops.sa_proof

sigmaprops.sa_step_proof

sigmaprops.sb_basis_proof

sigmaprops.sb_proof

sigmaprops.sb_step_proof

sigmaprops.sigma_bound_proof

sigmaprops.sigma_split_proof

sigmaprops_tcc.revsigma_TCC1_PROOF

sigmaprops_tcc.sigma_TCC1_PROOF

sums.abs_mean_proof

sums.abs_sum_proof

sums.mean_bound_proof

sums.sum_bound_mod_proof

sums_tcc.mean_TCC1_PROOF

sums_tcc.split_mean_TCC1_PROOF

top.C6_TCC1_PROOF

top.abs_recip_TCC2_PROOF

Total: 52

Appendix C

Speci�cations

numeric types: Module

Exporting all

Theory

n: Var int

x: Var number

posint: Type from int with (� n : n > 0)

posnum: Type from number with (� x : x > 0)

fraction: Type from number with (� x : x � 0 ^ x < 1)

End numeric types

numeric types tcc: Module

Using numeric types

Exporting all with numeric types

Theory

n: Var integer

x: Var number

posint TCC1: Formula (9 n : n > 0)

posnum TCC1: Formula (9 x : x > 0)

fraction TCC1: Formula (9 x : x � 0 ^ x < 1

Proof

posint TCC1 PROOF: Prove posint TCC1

posnum TCC1 PROOF: Prove posnum TCC

fraction TCC1 PROOF: Prove fraction TCC1

92

Appendix C. Speci�cations

End numeric types tcc numeric types tcc proofs: Module

Using numeric types; numeric types tcc

Proof

posint TCC1 PROOF: Prove posint TCC1 fn

posnum TCC1 PROOF: Prove posnum TCC

fraction TCC1 PROOF: Prove fraction TCC1

End numeric types tcc proofs

Appendix C. Speci�cations

arithmetics: Module

Exporting x

2

Theory

x; y; z: Var number

x

2
: function[number! number] == (� x : x=2)

mult pos: Axiom x � y > 0, (x > 0 ^ y > 0) _ (x < 0 ^ y < 0)

quotient pos: Lemma z > 0 � 1=z > 0

div mult: Lemma y > 0 ^ z < x � y � z=y < x

mult mon: Lemma x < y ^ z > 0 � x � z < y � z

mult mon2: Lemma x � y ^ z � 0 � x � z � y � z

div mon: Lemma x < y ^ z > 0 � x=z < y=z

div mon2: Lemma x � y ^ z > 0 � x=z � y=z

Proof

quotient pos proof: Prove quotient pos from
mult pos fx z, y 1= if z = 0 then 1 else z end ifg

div mult proof: Prove div mult from
div mon fz y, x z, y x � yg

mult mon proof: Prove mult mon from mult pos fx y � x, y zg

mult pos alt: Lemma x � 0 ^ y � 0 � x � y � 0

mult pos alt proof: Prove mult pos alt from mult pos

mult mon2 proof: Prove mult mon2 from
mult pos alt fy y � x, x zg

div mon proof: Prove div mon from
mult mon fz 1= if z = 0 then 1 else z e

div mon2 proof: Prove div mon2 from div m

End arithmetics

Appendix C. Speci�cations

arithmetics tcc: Module

Using arithmetics

Exporting all with arithmetics

Theory

x: Var number

y: Var number

z: Var number

half TCC1: Formula (2 6= 0)

quotient pos TCC1: Formula (z > 0) � (z 6= 0)

div mult TCC1: Formula (y > 0 ^ z < x � y) � (y 6= 0)

div mon TCC1: Formula (x < y ^ z > 0) � (z 6= 0)

div mon2 TCC1: Formula (x � y ^ z > 0) � (z 6= 0)

quotient pos proof TCC1: Formula (if z = 0 then 1 else z end if 6= 0)

Proof

half TCC1 PROOF: Prove half TCC1

quotient pos TCC1 PROOF: Prove quotient pos TCC1

div mult TCC1 PROOF: Prove div mult TCC1

div mon TCC1 PROOF: Prove div mon TCC1

div mon2 TCC1 PROOF: Prove div mon2 TCC1

quotient pos proof TCC1 PROOF: Prove quotient pos proof TCC1

End arithmetics tcc

absolutes: Module

Using arithmetics

Exporting jaj with arithmetics

Theory

a; b; u; v; w; x; y; z: Var number

jaj: function[number! number] =
(� a : if a < 0 then � a else a end if)

abs times: Lemma ja � bj = jaj � jbj

abs recip: Lemma b 6= 0 � j1=bj = 1=jbj

abs div: Lemma b 6= 0 � ja=bj = jaj=jbj

abs ax0: Lemma 0 = j0j

abs ax1: Lemma 0 � jxj

abs ax2: Lemma jx+ yj � jxj+ jyj

abs ax2b: Lemma jx+ y + zj � jxj+ jyj+ jzj

abs ax2c: Lemma jw + x+ y + zj � jwj+ jxj

abs ax3: Lemma j � xj = jxj

abs ax4: Lemma jx� yj = jy � xj

abs ax5: Lemma 0 � x ^ x � z ^ 0 � y ^ y �

abs ax6: Lemma jxj � y � �y � x ^ x � y

abs ax7: Lemma jxj = jjxjj

abs ax8: Lemma jx� yj � jxj+ jyj

Appendix C. Speci�cations

pos abs: Lemma 0 � x � jxj = x

abs div2: Lemma y > 0 � jx=yj = jxj=y

rearrange: Lemma
jx� yj � jx� (u+ v)j + jy � (w + z)j+ ju+ v � (w + z)j

rearrange alt: Lemma jx� yj � jx� (u+ v)j + ju�wj+ jy � (w + v)j

Proof

abs times proof: Prove abs times from
mult pos fx a, y bg,
jaj ,
jaj fa bg,
jaj fa a � bg

abs recip proof: Prove abs recip from
quotient pos fz �bg,
quotient pos fz bg,
jaj fa 1= if b = 0 then 1 else b end ifg,
jaj fa bg

abs div proof: Prove abs div from
abs times fb 1= if b = 0 then 1 else b end ifg, abs recip

abs proof0: Prove abs ax0 from jaj fa 0g

abs proof1: Prove abs ax1 from jaj fa xg

abs proof2: Prove abs ax2 from
jaj fa x+ yg, jaj fa xg, jaj fa yg

abs proof2b: Prove abs ax2b from
abs ax2 fy y + zg, abs ax2 fx y, y zg

abs proof2c: Prove abs ax2c from
abs ax2 fx w, y x+ y + zg, abs ax2b

abs proof3: Prove abs ax3 from jaj fa xg,

abs proof4: Prove abs ax4 from jaj fa x�

abs proof5: Prove abs ax5 from jaj fa x�

abs proof6: Prove abs ax6 from jaj fa xg

abs proof7: Prove abs ax7 from abs ax1, jaj

abs proof8: Prove abs ax8 from
jaj fa x� yg, jaj fa xg, jaj fa yg

pos abs proof: Prove pos abs from jaj fa

abs div2 proof: Prove abs div2 from
abs div fa x, b yg, pos abs fx yg

rearrange1: Lemma
x� y = (x � (u+ v)) + (w + z � y) + (u+ v

rearrange1 proof: Prove rearrange1

rearrange2: Lemma
j(x� (u+ v)) + (w + z � y) + (u + v � (w +
� jx� (u+ v)j + jy � (w + z)j+ ju+ v �

rearrange2 proof: Prove rearrange2 from
abs ax2b
fx x� (u+ v),
y u+ v � (w + z),
z w + z � yg,

abs ax3 fx w + z � yg

rearrange proof: Prove rearrange from rearra

rearrange alt proof: Prove rearrange alt from

End absolutes

Appendix C. Speci�cations

absolutes tcc: Module

Using absolutes

Exporting all with absolutes

Theory

b: Var number

y: Var number

abs recip TCC1: Formula (b 6= 0) � (b 6= 0)

abs recip TCC2: Formula (b 6= 0) � (jbj 6= 0)

abs div2 TCC1: Formula (y > 0) � (y 6= 0)

abs recip proof TCC1: Formula (if b = 0 then 1 else b end if 6= 0)

Proof

abs recip TCC1 PROOF: Prove abs recip TCC1

abs recip TCC2 PROOF: Prove abs recip TCC2

abs div2 TCC1 PROOF: Prove abs div2 TCC1

abs recip proof TCC1 PROOF: Prove abs recip proof TCC1

End absolutes tcc

natprops: Module

Exporting di�

Theory

i;m; n: Var nat

di�: function[nat; nat! nat] =
(� n;m! nat : if n � m then n �m else

di� zero: Lemma n > m � di�(n;m) > 0

pred di�: Lemma n > m � pred(di�(n;m)) =

di�1: Lemma n � m � di�(n+ 1;m+ 1) = d

di� di�: Lemma
n � m ^ n � i ^m � i � di�(di�(n; i); di�(m

di� plus: Lemma n � m � m + di�(n;m) = n

di� ineq: Lemma n � m ^ n � i ^m � i � di

Proof

di� zero proof: Prove di� zero from di�

pred di� proof: Prove pred di� from di�, di�

di�1 proof: Prove di�1 from di�, di� fn n

di� di� proof: Prove di� di� from
di�,
di� fm ig,
di� fn m, m ig,
di� fn di�(n; i), m di�(m; i)g

di� plus proof: Prove di� plus from di�

Appendix C. Speci�cations

di� ineq proof: Prove di� ineq from
di� fm ig, di� fn m, m ig

End natprops

natprops tcc: Module

Using natprops

Exporting all with natprops

Theory

m: Var naturalnumber

n: Var naturalnumber

di� TCC1: Formula (if n � m then n �m

Proof

di� TCC1 PROOF: Prove di� TCC1

End natprops tcc

Appendix C. Speci�cations

functionprops: Module [A;B: Type]

Theory

F;G: Var function[A! B]

x: Var A

extensionality: Axiom (8 x : F (x) = G(x)) � F = G

End functionprops

noetherian: Module [dom: Type, <: function

Assuming

measure: Var function[dom! nat]

a; b: Var dom

well founded: Formula (9measure : a < b � m

Theory

p;A;B: Var function[dom! bool]

d; d1; d2: Var dom

general induction: Axiom
(8 d1 : (8 d2 : d2 < d1 � p(d2)) � p(d1)) � (

End noetherian

Appendix C. Speci�cations

natinduction: Module

Using natprops

Theory

q; i; i0; i1; i2; i3; j;m; n: Var nat

prop; A;B: Var function[nat! bool]

prop2: Var function[nat; nat! bool]

induction: Lemma
(prop(0) ^ (8 i : prop(i) � prop(i + 1))) � (8 n : prop(n))

induction m: Lemma
(prop(m) ^ (8 i : i � m ^ prop(i) � prop(i+ 1)))
� (8 n : n � m � prop(n))

mod induction: Lemma
(8 j : A(j + 1) � A(j))

^ ((A(0) � B(0)) ^ (8 i : A(i + 1) ^B(i) � B(i + 1)))
� (8 n : A(n) � B(n))

mod induction m: Lemma
(8 j : j � m ^A(j + 1) � A(j))

^ ((A(m) � B(m)) ^ (8 i : i � m ^A(i+ 1) ^B(i) � B(i + 1)))
� (8 n : n � m ^A(n) � B(n))

induction1: Lemma
(prop(1) ^ (8 i : i � 1 ^ prop(i) � prop(i + 1)))
� (8 n : n � 1 � prop(n))

mod induction1: Lemma
(8 j : j � 1 ^A(j + 1) � A(j))

^ ((A(1) � B(1)) ^ (8 i : i � 1 ^A(i+ 1) ^B(i) � B(i + 1)))
� (8 n : n � 1 ^A(n) � B(n))

induction2: Lemma
(8 i0 : prop2(i0; 0))

^ (8 j : (8 i1 : prop2(i1; j)) � (8 i2 : pr
� (8 i3; n : prop2(i3; n))

Proof

Using noetherian

prev: function[nat; nat! bool] == (� m; n : m

instance: Module is noetherian[nat, prev]

x: Var nat

identity: function[nat! nat] == (� n : n)

discharge: Prove well founded fmeasure id

ind proof: Prove induction fi pred(d1@p1)
general induction fd n, d2 i, p prop

ind m proof: Prove induction m fi i@p1 +
induction
fprop (� x : prop@c(x +m)),
n if n � m then n�m else 0 end

mod m proof: Prove mod induction m fi i

induction m fprop (� i! bool : A(i) � B

mod induction proof: Prove mod induction f
from mod induction m fm 0g, nat invari

induction1 proof: Prove induction1 fi i@p
induction m fm 1g

mod induction1 proof: Prove mod induction1
from mod induction m fm 1g

Appendix C. Speci�cations

curry: function[function[nat; nat! bool]! function[nat! bool]] =
(� prop2 : (� i : (8 q : prop2(q; i))))

induction2 proof: Prove
induction2 fi0 q@p2, i2 q@p4, j i@p1g from
induction fprop curry(prop2)g,
curry fi 0g,
curry fi i@p1, q i1g,
curry fi i@p1 + 1g,
curry fi n, q i3g

End natinduction

natinduction tcc: Module

Using natinduction

Exporting all with natinduction

Theory

m: Var naturalnumber

n: Var naturalnumber

q: Var naturalnumber

j: Var naturalnumber

i: Var naturalnumber

d1: Var naturalnumber

ind m proof TCC1: Formula (if n � m then

Proof

ind m proof TCC1 PROOF: Prove ind m pro

End natinduction tcc

Appendix C. Speci�cations

sums: Module

Using absolutes; natprops; sigmaprops

Exporting
P

j

i
(F);

L
j

i
(F)

Theory

i; j; k; n; pp; qq; rr: Var nat

x; y; z: Var number

F;G: Var function[nat! number]

P
j

i
(F): function[nat; nat; function[nat! number]! number] =
(� i; j; F : if i � j + 1 then �(i; di�(j + 1; i); F) else 0 end if)

L
j

i
(F): function[nat; nat; function[nat! number]! number] =

(� i; j; F : if i � j then
P

j

i
(F)=(j + 1� i) else 0 end if)

mean lemma: LemmaL
j

i
(F) = if i � j

then �(i; di�(j + 1; i); F)=(j + 1� i)
else 0
end if

split sum: Lemma
i � j + 1 ^ i � k + 1 ^ k � j �

P
j

i
(F) =

P
k

i
(F) +

P
j

k+1(F)

split mean: Lemma
i � j ^ i � k + 1 ^ k � j

�
L

j

i
(F) = (

P
k

i
(F) +

P
j

k+1(F))=(j � i+ 1)

sum bound: Lemma
i � j + 1 ^ (8 pp : i � pp ^ pp � j � F (pp) < x)

�
P

j

i
(F) � x � (j + 1� i)

mean bound: Lemma
i � j ^ (8 pp : i � pp ^ pp � j � F (pp) < x) �

L
j

i
(F) < x

mean const: Lemma i � j � x =
L

j

i
((� qq!

mean mult: Lemma
L

j

i
(F) � x =

L
j

i
((� qq!

mean sum: Lemma
L

j

i
(F) +

L
j

i
(G)

=
L

j

i
((� qq! number : F (qq) + G(qq)))

mean di�: LemmaL
j

i
(F)�

L
j

i
(G) =

L
j

i
((� qq! number : F

abs mean: Lemma j
L

j

i
(F)j �

L
j

i
((� qq! n

rearrange sum: Lemma
i � j � x+

L
j

i
(F)� (y +

L
j

i
(G))

=
L

j

i
((� qq! number : x+ F (qq)� (

Proof

mean lemma proof: Prove mean lemma from

split sum proof: Prove split sum fromP
j

i
(F) ,P
j

i
(F) fj kg,P
j

i
(F) fi k + 1g,

split sigma
fn di�(j + 1; i),
m di�(k + 1; i),
i ig,

di� di� fn j + 1, m k + 1g,
di� plus fn k + 1, m ig,
di� ineq fn j + 1, m k + 1g

split mean proof: Prove split mean from spli

sum bound mod: Lemma
i � j ^ (8 pp : i � pp ^ pp � j � F (pp) < x

�
P

j

i
(F) < x � (j + 1� i)

Appendix C. Speci�cations

sum bound mod proof: Prove sum bound mod fpp k@p2g fromP
j

i
(F) ,

sigma bound fn di�(j + 1; i), i ig,
di� fn j + 1, m ig,
di� fn j + 1, m i + 1g

sum bound0: Lemma
i = j + 1 ^ (8 pp : i � pp ^ pp � j � F (pp) < x)

�
P

j

i
(F) � x � (j + 1� i)

sum bound0 proof: Prove sum bound0 fromP
j

i
(F) fi j + 1g,

di� fn j + 1, m j + 1g,
�(i; n; F) fi j + 1, n 0g

sum bound proof: Prove sum bound fpp pp@p1g from
sum bound mod, sum bound0

mean bound proof: Prove mean bound fpp pp@p1g from

sum bound mod,
L

j

i
(F) , div mult fz

P
j

i
(F), y j � i + 1g

mean const proof: Prove mean const from
mean lemma fF (� qq! number : x)g,
sigma const fn di�(j + 1; i), i ig,
di� fn j + 1, m ig

sum mult: Lemma
P

j

i
(F) � x =

P
j

i
((� qq! number : F (qq) � x))

sum mult proof: Prove sum mult fromP
j

i
(F) ,P
j

i
(F) fF (� qq! number : F (qq) � x)g,

mod sigma mult fi i, n di�(j + 1; i)g

mean mult proof: Prove mean mult fromL
j

i
(F) ,

L
j

i
(F) fF (� qq! number : F (qq) � x)g, sum mult

mean sum proof: Prove mean sum from

mean lemma fF (� qq! number : F (qq)
mean lemma,
mean lemma fF Gg,
sigma sum fn di�(j + 1; i), i ig

mean di� proof: Prove mean di� from
mean mult fF G, x �1g,
mean sum fG (� qq! number : G(qq) �

abs sum: Lemma j
P

j

i
(F)j �

P
j

i
((� qq! nu

abs sum proof: Prove abs sum fromP
j

i
(F) ,P
j

i
(F) fF (� qq! number : jF (qq)j)g,

sigma abs fn di�(j + 1; i), i ig,
abs ax0

abs mean proof: Prove abs mean fromL
j

i
(F) ,L
j

i
(F) fF (� qq! number : jF (qq)j)g,

abs sum,
abs div2 fx

P
j

i
(F), y j + 1� ig,

div mon2 fx j
P

j

i
(F)j, y

P
j

i
(F@p2),

abs ax0

rearrange sub: Lemma
i � j � x+

L
j

i
(F) =

L
j

i
((� qq! number

rearrange sub proof: Prove rearrange sub fro
mean const, mean sum fG (� qq! numb

Appendix C. Speci�cations

rearrange sum proof: Prove rearrange sum from

rearrange sub,
rearrange sub fx y, F Gg,
mean di�
fF (� pp! number : x+ F@c(pp)),
G (� pp! number : y +G@c(pp))g

End sums

sums tcc: Module

Using sums

Exporting all with sums

Theory

i: Var naturalnumber

j: Var naturalnumber

F : Var function[naturalnumber! number]

pp: Var naturalnumber

k: Var naturalnumber

mean TCC1: Formula (i � j) � ((j + 1� i) 6=

split mean TCC1: Formula
(i � j ^ i � k + 1 ^ k � j) � ((j � i + 1) 6= 0

Proof

mean TCC1 PROOF: Prove mean TCC1

split mean TCC1 PROOF: Prove split mean

End sums tcc

Appendix C. Speci�cations

sigmaprops: Module

Using absolutes; natprops; functionprops[nat; number]; natinduction

Exporting �(i; n; F);middle

Theory

i; i1; i2; j; k; l: Var nat

F;G: Var function[nat! number]

n;m;mm; nn; qq: Var nat

x; y: Var number

middle: function[nat; nat; function[nat! number]! nat] ==
(� i; n; F : n)

�(i; n; F) :
Recursive function[nat; nat; function[nat! number]! number] =
(� i; n; F :

if n = 0 then 0 else �(i; pred(n); F) + F (i+ pred(n)) end if)
by middle

sigma const: Lemma �(i; n; (� qq! number : x)) = n � x

sigma mult: Lemma �(i; n; (� qq! number : x � F (qq))) = x � �(i; n; F)

mod sigma mult: Lemma
�(i; n; (� qq! number : F (qq) � x)) = �(i; n; F) � x

sigma sum: Lemma
�(i; n; F) + �(i; n;G) = �(i; n; (� qq! number : F (qq) + G(qq)))

split sigma: Lemma
n � m � �(i; n; F) = �(i;m; F) + �(i +m; di�(n;m); F)

sigma abs: Lemma j�(i; n; F)j � �(i; n; (� qq! number : jF (qq)j))

sigma bound: Lemma
n > 0 ^ (8 k : i � k ^ k � i+ pred(n) � F (k
� �(i; n; F) < n � x

Proof

sigma const basis: Lemma �(i; 0; (� qq! num

sc basis proof: Prove sigma const basis from
�(i; n; F) fn 0, F (� qq! number : x

sigma const step: Lemma
�(i; n; (� qq! number : x)) = n � x

� �(i; n+ 1; (� qq! number : x)) = (n+

sc step proof: Prove sigma const step from
�(i; n; F) fn n+ 1, F (� qq! numbe
nat invariant fnat var ng

sc proof: Prove sigma const from
induction
fprop (� nn! bool :

�(i; nn; (� qq! number : x@c)) =
sigma const basis,
sigma const step fn i@p1g

sigma mult basis: Lemma
�(i; 0; (� qq! number : x � F (qq))) = x � �

sm basis proof: Prove sigma mult basis from
�(i; n; F) fn 0g,
�(i; n; F) fn 0, F (� qq! number : x

sigma mult step: Lemma
�(i; n; (� qq! number : x � F (qq))) = x � �

� �(i; n+ 1; (� qq! number : x � F (qq))

Appendix C. Speci�cations

sm step proof: Prove sigma mult step from
�(i; n; F) fn n+ 1, F (� qq! number : x � F (qq))g,
�(i; n; F) fn n+ 1g,
nat invariant fnat var ng

sm proof: Prove sigma mult from
induction
fprop (� nn! bool :

�(i; nn; (� qq! number : x � F (qq))) = x � �(i; nn; F))g,
sigma mult basis,
sigma mult step fn i@p1g

mod sigma mult proof: Prove mod sigma mult from
sigma mult,
extensionality
fF (� qq! number : x � F (qq)),
G (� qq! number : F (qq) � x)g

sigma sum basis: Lemma
�(i; 0; F) + �(i; 0; G) = �(i; 0; (� qq! number : F (qq) + G(qq)))

ss basis proof: Prove sigma sum basis from
�(i; n; F) fn 0, F (� qq! number : F (qq) +G(qq))g,
�(i; n; F) fn 0, F Gg,
�(i; n; F) fn 0g

sigma sum step: Lemma
�(i; n; F) + �(i; n;G) = �(i; n; (� qq! number : F (qq) + G(qq)))
� �(i; n+ 1; F) + �(i; n+ 1; G)
= �(i; n + 1; (� qq! number : F (qq) +G(qq)))

ss step proof: Prove sigma sum step from
�(i; n; F) fn n+ 1, F (� qq! number : F (qq) +G(qq))g,
�(i; n; F) fn n+ 1, F Gg,
�(i; n; F) fn n+ 1g,
nat invariant fnat var ng

ss proof: Prove sigma sum from

induction
fprop (� nn! bool :

�(i; nn; F) + �(i; nn; G)
= �(i; nn; (� qq! number : F (q

sigma sum basis,
sigma sum step fn i@p1g

sigma1: Lemma �(i; n+ 1; F) = F (i) + �(i +

sigma1 basis: Lemma �(i; 1; F) = F (i) + �(i

s1b proof: Prove sigma1 basis from
�(i; n; F) fn 0g,
�(i; n; F) fi i + 1, n 0g,
�(i; n; F) fn 1g

sigma1 step: Lemma
�(i; n+ 1; F) = F (i) + �(i + 1; n; F)
� �(i; n+ 2; F) = F (i) + �(i + 1; n+ 1; F

s1s proof: Prove sigma1 step from
�(i; n; F) fi i + 1, n n+ 1g,
�(i; n; F) fn n+ 2g,
nat invariant fnat var ng

sigma1 proof: Prove sigma1 from
induction
fprop (� nn! bool : �(i; nn + 1; F) =

sigma1 basis,
sigma1 step fn i@p1g

revsigma: Recursive function[nat; nat; functio
! number]

(� i; n; F :

if n = 0 then 0 else F (i) + revsigma
by middle

Appendix C. Speci�cations

sigma rev: Lemma �(i; n; F) = revsigma(i; n; F)

sigma rev basis: Lemma �(i; 0; F) = revsigma(i; 0; F)

srb proof: Prove sigma rev basis from
�(i; n; F) fn 0g, revsigma fn 0g

sigma rev step: Lemma
(8 i1 : �(i1; n; F) = revsigma(i1; n; F))
� (8 i2 : �(i2; n+ 1; F) = revsigma(i2; n+ 1; F))

srp proof: Prove sigma rev step fi1 i2 + 1g from
revsigma fi i2, n n+ 1g,
sigma1 fi i2g,
nat invariant fnat var ng

sigma rev proof: Prove sigma rev from
induction2
fi1 i1@p3,
i3 i,
prop2
 (� i; nn! bool : �(i; nn; F) = revsigma(i; nn; F))g,

sigma rev basis fi i0@p1g,
sigma rev step fi2 i2@p1, n j@p1g

split sigma basis: Lemma �(i; n; F) = �(i; 0; F) + �(i; di�(n; 0); F)

split basis proof: Prove split sigma basis from
�(i; n; F) ,
�(i; n; F) fn 0g,
di� fm 0g,
nat invariant fnat var ng

split sigma step: Lemma
(n � m � �(i; n; F) = �(i;m; F) + �(i +m; di�(n;m); F))
� (n � m + 1

� �(i; n; F) = �(i;m + 1; F) + �(i +m + 1; di�(n;m+ 1); F))

split step proof: Prove split sigma step from
�(i; n; F) fn m + 1g,
sigma rev fi i+m + 1, n di�(n;m + 1
revsigma fi i+m, n di�(n;m)g,
sigma rev fi i+m, n di�(n;m)g,
pred di�,
di�,
nat invariant fnat var mg

split proof: Prove split sigma from
induction
fn m,
prop
 (� nn! bool :

n � nn � �(i; n; F) = �(i; nn; F) +
split sigma basis,
split sigma step fm i@p1g

sigma abs basis: Lemma j�(i; 0; F)j � �(i; 0; (

sa basis proof: Prove sigma abs basis from
�(i; n; F) fn 0g,
�(i; n; F) fn 0, F (� qq! number : jF
abs ax0

sigma abs step: Lemma
j�(i; n; F)j � �(i; n; (� qq! number : jF (qq
� j�(i; n+ 1; F)j � �(i; n+ 1; (� qq! nu

sa step proof: Prove sigma abs step from
�(i; n; F) fn n+ 1g,
�(i; n; F) fn n+ 1, F (� qq! numbe
abs ax2 fx F (i+ n), y �(i; n; F)g,
nat invariant fnat var ng

Appendix C. Speci�cations

sa proof: Prove sigma abs from
induction
fprop (� nn! bool :

j�(i; nn; F)j � �(i; nn; (� qq! number : jF (qq)j)))g,
sigma abs basis,
sigma abs step fn i@p1g

bounded: function[nat; nat; function[nat! number]; number! bool] =
(� i; n; F; x : (8 k : i � k ^ k � i+ pred(n) � F (k) < x))

bounded lemma: Lemma
n > 0 ^ bounded(i; n+ 1; F; x) � bounded(i; n; F; x)

bounded proof: Prove bounded lemma from
bounded fk k@p1g, bounded fn n + 1, k k@p1g

sigma bound basis: Lemma bounded(i; 1; F; x)� �(i; 1; F) < x

sb basis proof: Prove sigma bound basis from
bounded fn 1, k ig,
�(i; n; F) fn 0g,
�(i; n; F) fn 1g

alt sigma bound step: Lemma
n > 0 ^ bounded(i; n+ 1; F; x)^ �(i; n; F) < n � x

� �(i; n+ 1; F) < x+ n � x

alt sigma bound one step: Lemma
n > 0 ^ bounded(i; n+ 1; F; x) � �(i; n+ 1; F) < x+ �(i; n; F)

alt sigma bound one step proof: Prove alt sigma bound one step from
bounded fn n+ 1, k i+ ng, �(i; n; F) fn n+ 1g

sigma split: Lemma
�(i; n+ 1; F) < x+ �(i; n; F) ^ �(i; n; F) < y

� �(i; n+ 1; F) < x+ y

sigma split proof: Prove sigma split

alt sb step proof: Prove alt sigma bound step
alt sigma bound one step, sigma split fy

sigma bound step: Lemma
n > 0 ^ bounded(i; n+ 1; F; x)^ �(i; n; F) <
� �(i; n+ 1; F) < (n+ 1) � x

sb step proof: Prove sigma bound step from

sb: Lemma n > 0 ^ bounded(i; n; F; x) � �(i;

sb proof: Prove sb from
mod induction1
fA (� nn! bool : bounded(i; nn; F; x)
B (�mm! bool : �(i;mm; F) < mm

bounded lemma fn j@p1g,
sigma bound basis,
sigma bound step fn i@p1g

sigma bound proof: Prove sigma bound fk

End sigmaprops

Appendix C. Speci�cations

sigmaprops tcc: Module

Using sigmaprops

Exporting all with sigmaprops

Theory

F : Var function[naturalnumber! number]

n: Var naturalnumber

k: Var naturalnumber

j: Var naturalnumber

i2: Var naturalnumber

i0: Var naturalnumber

i1: Var naturalnumber

i: Var naturalnumber

x: Var number

sigma TCC1: Formula
(:(n = 0)) � middle(i; n; F) > middle(i; pred(n); F)

revsigma TCC1: Formula
(:(n = 0)) � middle(i; n; F) > middle(i + 1; pred(n); F)

Proof

sigma TCC1 PROOF: Prove sigma TCC1

revsigma TCC1 PROOF: Prove revsigma TCC1

End sigmaprops tcc

time: Module

Using absolutes; numeric types

Exporting clocktime; realtime; posclocktime; p
R;S; T 0; T (i); T 2 R(i); T 2 S(i) with absolute

Theory

realtime: Type is number

clocktime: Type is number

posclocktime: Type is posnum

posrealtime: Type is posnum

period: Type is nat

R;S: posclocktime

posR: Lemma 0 < R

posS: Lemma 0 < S

C1: Axiom R � 3 � S

SinR: Lemma S < R

T 0: clocktime

i: Var period

T (i): function[period! clocktime] = (� i : T 0

T next: Lemma T (i+1) = T (i) + R

T; T1; T2;�: Var clocktime

T 2 R(i): function[clocktime; period! boolean
(� T; i : (9� : 0 � � ^� � R ^ T = T (i) +

Appendix C. Speci�cations

Ti in R: Lemma T (i) 2 R(i)

T 2 S(i): function[clocktime; period! boolean] =
(� T; i : (9� : 0 � � ^� � S ^ T = T (i) + R� S +�))

inRS: Lemma T 2 S(i) � T 2 R(i)

Ti in S: Lemma T (i+1) 2 S(i)

in S lemma: Lemma (9 i : T1 2 S
(i) ^ T2 2 S

(i)) � jT1 � T2j � S

Proof

posS proof: Prove posS from posnum invariant fposnum var Sg

posR proof: Prove posR from posnum invariant fposnum var Rg

SinR proof: Prove SinR from C1, posS, posR

Ti proof: Prove Ti in R from

T 2 R(i) fT T (i), � 0g, abs ax0, posR

inRS proof: Prove inRS from
T 2 S(i) , T 2 R(i) f� R� S +�@p1g, SinR

T next proof: Prove T next from T (i) , T (i) fi i + 1g

Ti in S proof: Prove Ti in S from
T 2 S(i) f� S, T T (i+1)g, posS, T next

in S proof: Prove in S lemma from
T 2 S(i) fT T1g,
T 2 S(i) fT T2g,
abs ax5 fx �@p1, y �@p2, z Sg

End time

clocks: Module

Using time

Exporting proc; c?1(?2); �; goodclock with tim

Theory

proc: Type is nat

p: Var proc

c?1(?2): function[proc; clocktime! realtime]

i: Var period

T; T0; T1; T2; TN : Var clocktime

�: fraction

rho pos: Lemma �

2
� 0

rho small: Lemma �

2
< 1

goodclock: function[proc; clocktime; clocktime
(� p; T0; TN :

(8 T1; T2 :
T0 � T1 ^ T0 � T2 ^ T1 � TN ^ T2 �

� jcp(T1)� cp(T2)� (T1 � T2)j �

monotonicity: Theorem
(9 T0; TN :

goodclock(p; T0; TN) ^ T0 � T1 ^ T0 �

� (T1 > T2 � cp(T1) � cp(T2))

Proof

rho pos proof: Prove rho pos from

fraction invariant ffraction var �g

Appendix C. Speci�cations

rho small proof: Prove rho small from
fraction invariant ffraction var �g

x; y: Var number

diminish: Lemma x > 0 � �

2
� x � x

diminish proof: Prove diminish from
mult mon2 fx �

2
, y 1, z xg, rho small

monoproof: Prove monotonicity from
goodclock,
diminish fx jT1 � T2jg,
jaj fa cp(T1) � cp(T2) � (T1 � T2)g,
jaj fa T1 � T2g

End clocks

algorithm: Module

Using clocks; sums

Exporting second arg; C
(i)
p ; A

(i)
p (T); c

(i)
p (T); no

�
(?3)

?1;?2;
��
(i)
r;p; skew; S1; S1A; S1C; S2; �; �; �0; n;m

Theory

T; T0; T1; X;�: Var clocktime

i: Var period

p; q; r: Var proc

m;n: proc

�; �0; �: posrealtime

�;�: posclocktime

�
(?3)

?1;?2: function[proc; proc; period! clocktime

��
(i)
r;p: function[proc; proc; period! clocktime]

(� r; p; i : if r 6= p ^ j�
(i)
r pj < � then �

(i)
r p

�
(i)
p : function[proc; period! clocktime] =

(� p; i :
L

n

1 ((� r ! number : ��
(i)
r p)))

C0
?1: function[proc! clocktime]

second arg: function[proc; period! nat] == (

C
(i)
p : Recursive function[proc; period! cloc

(� p; i : if i > 0 then C
(pred(i))
p +�

(pred(
p

by second arg

Appendix C. Speci�cations

A
(i)
p (T): function[proc; period; clocktime! clocktime] ==

(� p; i; T : T + C
(i)
p)

c
(i)
p (T): function[proc; period; clocktime! realtime] =

(� p; i; T : cp(A
(i)
p (T)))

skew: function[proc; proc; clocktime; period! clocktime] ==

(� p; q; T; i! clocktime : jc
(i)
p (T)� c

(i)
q (T)j)

nonfaulty: function[proc; period! boolean] =

(� p; i : goodclock(p;A
(0)
p (T (0)); A

(i)
p (T (i+1))))

S1A: function[period! bool] =
(� i : (8 r : (m + 1 � r ^ r � n) � nonfaulty(r; i)))

S1C: function[proc; proc; period! bool] =
(� p; q; i :

(8 T :
nonfaulty(p; i) ^ nonfaulty(q; i) ^ T 2 R(i)

� skew(p; q; T; i) � �))

S1C lemma: Lemma S1C(p; q; i) � S1C(q; p; i)

S1: function[period! bool] =
(� i : S1A(i) � (8 p; q : S1C(p; q; i)))

S2: function[proc; period! bool] = (� p; i : (jC
(i+1)
p � C

(i)
p j < �))

A0: Axiom skew(p; q; T (0); 0) < �0

A1: Lemma nonfaulty(p; i) = goodclock(p;A
(0)
p (T (0)); A

(i)
p (T (i+1)))

A2: Axiom nonfaulty(p; i) ^ nonfaulty(q; i) ^ S1C(p; q; i) ^ S2(p; i)

� j�
(i)
q pj � S

^ (9 T0 : T0 2 S(i) ^ jc
(i)
p (T0 +�

(i)
q p)� c

(i)
q (T0)j < �)

A2 aux: Axiom �
(i)
pp = 0

C0: Axiom m < n

C2: Axiom S � �

C3: Axiom � � �

C4: Axiom � � � + �+ �

2
� S

C5: Axiom � � �0 + � �R

C6: Axiom �

� 2 � (�+ � � S) + 2 �m ��=(n�m) + n

+ � ��
+ n � � ��=(n�m)

C2and3: Lemma � � S

npos: Lemma n > 0

clock prop: Lemma c
(i+1)
p (T) = c

(i)
p (T +�

(i)
p)

D2bar prop: Lemma j ��
(i)
p qj < �

Theorem 1: Theorem S1(i)

Theorem 2: Theorem S2(p; i)

Proof

A1 proof: Prove A1 from nonfaulty

C2and3 proof: Prove C2and3 from C2, C3

npos proof: Prove npos from C0

Appendix C. Speci�cations

clock proof: Prove clock prop from

c
(i)
p (T) ,

c
(i)
p (T) fT T +�

(i)
p g,

c
(i)
p (T) fi i+ 1g,

C
(i)
p fi i+ 1g,

nat invariant fnat var ig

D2bar prop proof: Prove D2bar prop from
��
(i)
r;p fr p, p qg, abs ax0

S1C lemma proof: Prove S1C lemma from
S1C fT T@p2g,
S1C fp q, q pg,

abs ax4 fx c
(i)
q (T@p2), y c

(i)
p (T@p2)g

Theorem 2 proof: Prove Theorem 2 from
S2,

C
(i)
p fi i+ 1g,

D2bar prop fp pp@p6, q pg,

�
(i)
p ,

C0,
mean bound
fi 1,
j n,
x �,

F (� r! number : j ��
(i)
r pj)g,

abs mean fi 1, j n, F (� r ! number : ��
(i)
r p)g,

C3

End algorithm

algorithm tcc: Module

Using algorithm

Exporting all with algorithm

Theory

i: Var naturalnumber

p: Var naturalnumber

pp: Var naturalnumber

T : Var number

Corr TCC1: Formula (i > 0) � second arg(p;

C6 TCC1: Formula ((n �m) 6= 0)

Proof

Corr TCC1 PROOF: Prove Corr TCC1

C6 TCC1 PROOF: Prove C6 TCC1

End algorithm tcc

Appendix C. Speci�cations

clockprops: Module

Using clocks; algorithm; natinduction

Theory

T; T0; T1; T2; TN ;�: Var clocktime

p; q: Var proc

i: Var period

upper bound: Lemma

T 2 S(i) ^ j�j � R� S � A
(i)
p (T + �) � A

(i+1)
p (T (i+2))

lower bound: Lemma 0 � � � A
(0)
p (T (0)) � A

(i)
p (T (i) + �)

lower bound2: Lemma T 2 S(i) ^ j�j � R� S � A
(0)
p (T (0)) � A

(i)
p (T +�)

adj always pos: Lemma A
(i)
p (T (i)) � T 0 +C

(0)
p

nonfx: Lemma nonfaulty(p; i+ 1) � nonfaulty(p; i)

S1A lemma: Lemma S1A(i + 1) � S1A(i)

Proof

i2R: Lemma T (i+2) = T (i) + 2 �R

i2R proof: Prove i2R from T (i) fi i + 2g, T (i)

upper bound proof: Prove upper bound from
T 2 S(i) ,
i2R,
abs ax6 fx �, y R� Sg,
S2,
Theorem 2,

abs ax6 fx C
(i+1)
p � C

(i)
p , y �g,

C2

basis: Lemma A
(0)
p (T (0)) � T 0 + C

(0)
p

basis proof: Prove basis from C
(i)
p fi i+ 1

small shift: Lemma C
(i+1)
p � C

(i)
p � �R

small shift proof: Prove small shift from

S2, Theorem 2, jaj fa C
(i+1)
p � C

(i)
p g, C2,

inductive step: LemmaA
(i)
p (T (i)) � T 0+C

(0)
p

ind proof: Prove inductive step from small s

adj pos proof: Prove adj always pos from
induction
fn i,

prop (� i! bool : A
(i)
p (T (i)) � T 0 + C

basis,
inductive step fi i@p1g

lower bound proof: Prove lower bound from

adj always pos, T (i) fi 0g, C
(i)
p fi i+

lower bound2 proof: Prove lower bound2 from
lower bound f� T � T (i) +�@cg, T 2 S(

gc prop: Lemma
goodclock(p; T0; TN) ^ T0 � T ^ T � TN � g

gc proof: Prove gc prop from
goodclock fT1 T1@p2, T2 T2@p2g, goo

bounds: Lemma A
(0)
p (T (0)) � A

(i)
p (T (i+1)) ^A

Appendix C. Speci�cations

bounds proof: Prove bounds from
upper bound f� 0, T T (i+1)g,
lower bound2 f� 0, T T (i+1)g,
abs ax0,
SinR,
Ti in S

rmproof: Prove nonfx from
A1 fi i + 1g,
A1,
gc prop

fT0 A
(0)
p (T (0)),

TN A
(i+1)
p (T (i+2)),

T A
(i)
p (T (i+1))g,

bounds

S1A lemma proof: Prove S1A lemma from
S1A fi i, r r@p1g,
S1A fi i + 1, r r@p1g,
nonfx fp r@p1g

End clockprops

lemma1: Module

Using algorithm; lemma2

Theory

p; q: Var proc

i: Var period

lemma1def: Lemma
S1C(p; q; i)^ S2(p; i) ^ nonfaulty(p; i+ 1) ^ n

� j�
(i)
q pj < �

Proof

lemma1 proof: Prove lemma1def from
A2,

lemma2c f� �
(i)
q p, T T0@p1g,

S1C fT T0@p1g,

abs ax4 fx c
(i)
p (T0@p1), y c

(i)
q (T0@p1)g

abs ax4 fx c
(i)
p (T0@p1 + �@p2), y c

(i)
p

abs ax2b
fx y@p5 � x@p5,
y y@p4 � x@p4,
z x@p5� y@p4g,

nonfx,
nonfx fp qg,
inRS fT T0@p1g,

mult mon2 fx j�
(i)
q pj, y S, z �

2
g,

rho pos,
C4

End lemma1

Appendix C. Speci�cations

lemma2: Module

Using algorithm; clockprops

Theory

p; q; r: Var proc

i: Var period

T : Var clocktime

�;�: Var realtime

lemma2def: Lemma
nonfaulty(p; i+ 1)

^A
(i)
p (T) � A

(i+1)
p (T (i+2))

^A
(0)
p (T (0)) � A

(i)
p (T)

^A
(i)
p (T + �) � A

(i+1)
p (T (i+2)) ^A

(0)
p (T (0)) � A

(i)
p (T +�)

� jc
(i)
p (T +�) � (c

(i)
p (T) + �)j � �

2
� j�j

lemma2a: Lemma
nonfaulty(p; i+ 1) ^ j�+ �j � R� S ^ j�j � R� S ^ T 2 S(i)

� jc
(i)
p (T +�+ �)� (c

(i)
p (T + �) + �)j � �

2
� j�j

lemma2b: Lemma
nonfaulty(p; i+ 1) ^ j�j � S ^ j�j � S ^ T 2 S(i)

� jc
(i)
p (T +�+ �)� (c

(i)
p (T + �) + �)j � �

2
� j�j

lemma2c: Lemma
nonfaulty(p; i+ 1) ^ j�j � S ^ T 2 S(i)

� jc
(i)
p (T +�) � (c

(i)
p (T) + �)j � �

2
� j�j

lemma2d: Lemma
nonfaulty(p; i) ^ 0 � � ^� � R

� jc
(i)
p (T (i) + �)� (c

(i)
p (T (i)) + �)j � �

2
��

Proof

lemma2 proof: Prove lemma2def from
A1 fi i + 1g,
goodclock

fT0 A
(0)
p (T (0)),

TN A
(i+1)
p (T (i+2)),

T2 A
(i)
p (T),

T1 A
(i)
p (T +�)g,

c
(i)
p (T) ,

c
(i)
p (T) fT T + �g

lemma2a proof: Prove lemma2a from
lemma2def fT T + �g,
upper bound f� �+ �g,
lower bound2 f� �+�g,
upper bound f� �g,
lower bound2 f� �g

lemma2b proof: Prove lemma2b from
lemma2a,
abs ax1 fx �g,
abs ax2 fx �, y �g,
C1,
posS,
posR

lemma2c proof: Prove lemma2c from lemma

Appendix C. Speci�cations

lemma2d proof: Prove lemma2d from
A1,
goodclock

fT0 A
(0)
p (T (0)),

TN A
(i)
p (T (i+1)),

T1 A
(i)
p (T (i) +�),

T2 A
(i)
p (T (i))g,

c
(i)
p (T) fT T (i)g,

c
(i)
p (T) fT T (i) + �g,
posR,
pos abs fx �g,
lower bound,
lower bound f� 0g,
T next

End lemma2

lemma3: Module

Using algorithm; lemma2

Theory

p; q: Var proc

i: Var period

T; T0; T1; T2: Var clocktime

�: Var realtime

lemma3def: Lemma
S1C(p; q; i)

^ S2(p; i) ^ nonfaulty(p; i+ 1) ^ nonfau

� jc
(i)
p (T +�

(i)
q p)� c

(i)
q (T)j < �+ � � S

Proof

lemma3 proof: Prove lemma3def from
A2,
rearrange alt

fx c
(i)
p (T +�

(i)
q p),

y c
(i)
q (T),

u c
(i)
p (T0@p1 + �

(i)
q p),

v T � T0@p1,

w c
(i)
q (T0@p1)g,

lemma2b fT T0@p1, � �
(i)
q p, � T �

lemma2c fp q, T T0@p1, � T � T0@
nonfx,
nonfx fp qg,
mult mon2 fx jT � T0@p1j, y S, z
rho pos,
in S lemma fT1 T , T2 T0@p1g

End lemma3

Appendix C. Speci�cations

lemma4: Module

Using algorithm; lemma1; lemma2; lemma3

Theory

p; q; r: Var proc

i: Var period

T : Var clocktime

lemma4def: Lemma
S1C(q; r; i)

^ S1C(p; q; i)
^ S1C(p; r; i)
^ S2(p; i)
^ S2(q; i)
^ S2(r; i)
^ nonfaulty(p; i+ 1)
^ nonfaulty(q; i+ 1) ^ nonfaulty(r; i+ 1) ^ T 2 S(i)

� jc
(i)
p (T) + ��

(i)
r p � (c

(i)
q (T) + ��

(i)
r q)j < 2 � (� + � � S + �

2
��)

Proof

T0; T1; T2: Var clocktime

�: Var realtime

u; v; w; x; y; z: Var number

rearrange1: Lemma x� y = (u� y) � (v � x) + (v �w)� (u�w)

rearrange1 proof: Prove rearrange1

rearrange2: Lemma
j(u� y) � (v � x) + (v �w) � (u� w)j
� ju� yj + jv � xj+ jv � wj+ ju� wj

rearrange2 proof: Prove rearrange2 from
abs ax2c
fw (u � y),
x (x� v),
y (v � w),
z (w � u)g,

abs ax3 fx (v � x)g,
abs ax3 fx (u� w)g

rearrange3: Lemma jx� yj � ju� yj + jv � x

rearrange3 proof: Prove rearrange3 from rea

sublemma1: Lemma
S1C(p; r; i)^ S2(p; i) ^ nonfaulty(p; i+ 1) ^ n

� ��
(i)
r p = �

(i)
r p

sublemma1 proof: Prove sublemma1 from

lemma1def fq rg, ��
(i)
r;p , A2 aux

lemma2x: Lemma
S1C(p; r; i)

^ S2(p; i) ^ nonfaulty(p; i+ 1) ^ nonfau

� jc
(i)
p (T +�

(i)
r p)� (c

(i)
p (T) + �

(i)
r p)j �

�

2
�

lemma2x proof: Prove lemma2x from

lemma2c f� �
(i)
r pg,

lemma1def fq rg,
C2and3,

mult mon2 fz �

2
, x j�

(i)
r pj, y �g,

rho pos

Appendix C. Speci�cations

lemma4 proof: Prove lemma4def from
rearrange3

fx c
(i)
p (T) + ��

(i)
r p,

y c
(i)
q (T) + ��

(i)
r q,

u c
(i)
q (T +�

(i)
r q),

v c
(i)
p (T +�

(i)
r p),

w c
(i)
r (T)g,

sublemma1,
sublemma1 fp qg,
lemma2x,
lemma2x fp qg,
lemma3def fq rg,
lemma3def fp q, q rg,
S1C lemma

End lemma4

lemma5: Module

Using algorithm; clockprops

Theory

p; q; r: Var proc

T : Var clocktime

i; j: Var period

lemma5def: Lemma
S1C(p; q; i)^ nonfaulty(p; i+ 1) ^ nonfaulty(

� jc
(i)
p (T) + ��

(i)
r p � (c

(i)
q (T) + ��

(i)
r q)j < � +

Proof

a; b; x; y: Var clocktime

rearrange1: Lemma (a + x)� (b+ y) = (a� b

rearrange1 proof: Prove rearrange1

rearrange2: Lemma j(a+ x)� (b+ y)j � ja�

rearrange2 proof: Prove rearrange2 from
rearrange1, abs ax8, abs ax2 fx (a � b),

Appendix C. Speci�cations

lemma5proof: Prove lemma5def from
rearrange2

fa c
(i)
p (T),

b c
(i)
q (T),

x ��
(i)
r p,

y ��
(i)
r qg,

D2bar prop fp r, q pg,
D2bar prop fp r, q qg,
inRS,
S1C,
nonfx,
nonfx fp qg

End lemma5

lemma6: Module

Using algorithm; clockprops; lemma2

Theory

p; q: Var proc

i: Var period

T;�: Var clocktime

sublemma A: Lemma
nonfaulty(p; i) ^ nonfaulty(q; i) ^ T 2 R(i)

� skew(p; q; T; i) � skew(p; q; T (i); i) + � �

lemma6def: Lemma
nonfaulty(p; i+ 1) ^ nonfaulty(q; i+ 1) ^ T 2
� skew(p; q; T; i+ 1)

� jc
(i)
p (T (i+1)) + �

(i)
p � (c

(i)
q (T (i+1)) +

Proof

sublemma1: Lemma 0 � � ^� � R � 2 � �

2
�

sub1 proof: Prove sublemma1 from
mult mon2 fx �, y R, z �

2
g, rho po

Appendix C. Speci�cations

sub A proof: Prove sublemma A from

T 2 R(i) ,
rearrange alt

fx c
(i)
p (T),

y c
(i)
q (T),

u c
(i)
p (T (i)),

v �@p1,

w c
(i)
q (T (i))g,

lemma2d f� �@p1g,
lemma2d fp q, � �@p1g,
sublemma1 f� �@p1g

sublemma2: Lemma skew(p; q; T; i+ 1) = jc
(i)
p (T +�

(i)
p) � c

(i)
q (T +�

(i)
q)j

sub2 proof: Prove sublemma2 from clock prop, clock prop fp qg

lemma6 proof: Prove lemma6def from
sublemma A fi i+ 1g,
sublemma2 fT T (i+1)g,
rearrange

fx c
(i)
p (T (i+1) +�

(i)
p),

y c
(i)
q (T (i+1) +�

(i)
q),

u c
(i)
p (T (i+1)),

v �
(i)
p ,

w c
(i)
q (T (i+1)),

z �
(i)
q g,

lemma2c fT T (i+1), � �
(i)
p g,

lemma2c fT T (i+1), � �
(i)
q , p qg,

C
(i)
p fi i+ 1g,

C
(i)
p fi i+ 1, p qg,

S2,
S2 fp qg,
Theorem 2,
Theorem 2 fp qg,

mult mon2 fx j�
(i)
p j, y �, z �

2
g,

mult mon2 fx j�
(i)
q j, y �, z �

2
g,

rho pos,
Ti in S,
C2

End lemma6

Appendix C. Speci�cations

summations: Module

Using algorithm; sums; lemma4; lemma5; lemma6

Exporting with algorithm

Theory

p; q; r: Var proc

T : Var clocktime

i: Var period

culmination: Lemma
S1(i) ^ S1A(i+ 1) ^ S1C(p; q; i)
� (nonfaulty(p; i+ 1) ^ nonfaulty(q; i+ 1) ^ T 2 R(i+1)

� skew(p; q; T; i+ 1)
� ((� + 2 ��) �m + 2 � (� � S + �+ �

2
��) � (n �m))=n

+ � �R

+ � ��)

Proof

l1: Lemma jc
(i)
p (T (i+1)) + �

(i)
p � (c

(i)
q (T (i+1)) + �

(i)
q)j

�
L

n

1 ((� r ! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j))

l2: Lemma jc
(i)
p (T (i+1)) + �

(i)
p � (c

(i)
q (T (i+1)) + �

(i)
q)j

� (
P

m

1 ((� r! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j))

+
P

n

m+1((� r ! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j)))

=n

l3: Lemma S1A(i+ 1)
^ S1C(p; q; i)^ nonfaulty(p; i+ 1) ^ non
�
P

m

1 ((� r! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1

� (� + 2 ��) �m

l4: Lemma S1(i)
^ S1A(i + 1)
^ S1C(p; q; i) ^ nonfaulty(p; i+ 1) ^ n

�
P

n

m+1((� r! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1

� 2 � (� � S + � + �

2
��) � (n �m)

l5: Lemma S1(i)
^ S1A(i + 1)
^ S1C(p; q; i) ^ nonfaulty(p; i+ 1) ^ n

� jc
(i)
p (T (i+1)) + �

(i)
p � (c

(i)
q (T (i+1)) + �

(
q

� ((� + 2 ��) �m + 2 � (� � S + �+ �

2

l1 proof: Prove l1 from

�
(i)
p ,

�
(i)
p fp qg,

rearrange sum

fx c
(i)
p (T (i+1)),

y c
(i)
q (T (i+1)),

F (� r! number : ��
(i)
r p),

G (� r! number : ��
(i)
r q),

i 1,
j ng,

abs mean
fi 1,
j n,

F (� r! number : x@p3 + ��
(i)
r p � (y@

npos

Appendix C. Speci�cations

l2 proof: Prove l2 from
l1,
split mean
fi 1,
j n,
k m,
F

 (� r ! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j)g,

C0

bound faulty: Lemma
S1A(i + 1)

^ S1C(p; q; i)
^ 1 � r ^ r � m ^ nonfaulty(p; i+ 1) ^ nonfaulty(q; i+ 1)

� jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j < � + 2 ��

bound faulty proof: Prove bound faulty from
lemma5def fT T (i+1)g, Ti in S

l3 proof: Prove l3 from
sum bound
fF (� r! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j),

x � + 2 ��,
i 1,
j mg,

bound faulty fr pp@p1g

S2 pqr: Lemma S2(p; i) ^ S2(q; i) ^ S2(r; i)

S2 pqr proof: Prove S2 pqr from
Theorem 2, Theorem 2 fp qg, Theorem 2 fp rg

bound nonfaulty: Lemma
S1(i) ^ S1A(i + 1)

^ S1C(p; q; i)
^m + 1 � r

^ r � n ^ nonfaulty(p; i+ 1) ^ n

� jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(
r

< 2 � (� � S + � + �

2
��)

bound nonfaulty proof: Prove bound nonfaul
S1A fi i + 1g,
S1A lemma,
S1A,
nonfx,
nonfx fp qg,
S1 fq rg,
S1 fp q, q rg,
S2 pqr,
lemma4def fT T (i+1)g,
Ti in S

l4 proof: Prove l4 from
sum bound
fF (� r! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1))

x 2 � (� � S + �+ �

2
��),

i m + 1,
j ng,

bound nonfaulty fr pp@p1g,
C0

Appendix C. Speci�cations

l5 proof: Prove l5 from
l2,
l3,
l4,
div mon2
fx

P
m

1 ((� r! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j))

+
P

n

m+1((� r ! number :

jc
(i)
p (T (i+1)) + ��

(i)
r p � (c

(i)
q (T (i+1)) + ��

(i)
r q)j)),

y (� + 2 ��) �m+ 2 � (� � S + �+ �

2
��) � (n�m),

z ng,
npos

culm proof: Prove culmination from lemma6def, l5, S1A fi i+ 1g

End summations

summations tcc: Module

Using summations

Exporting all with summations

Theory

p: Var naturalnumber

q: Var naturalnumber

T : Var number

i: Var naturalnumber

pp: Var naturalnumber

y: Var number

x: Var number

culmination TCC1: Formula
(nonfaulty(p; i+ 1) ^ nonfaulty(q; i+ 1) ^ T

^ (S1(i) ^ S1A(i+ 1) ^ S1C(p; q; i))
� (n 6= 0)

l2 TCC1: Formula (n 6= 0)

l5 TCC1: Formula
(S1(i) ^ S1A(i + 1)

^ S1C(p; q; i) ^ nonfaulty(p; i+ 1
� (n 6= 0)

Proof

culmination TCC1 PROOF: Prove culminatio

l2 TCC1 PROOF: Prove l2 TCC1

l5 TCC1 PROOF: Prove l5 TCC1

Appendix C. Speci�cations

End summations tcc juggle: Module

Using algorithm

Exporting with algorithm

Theory

rearrange delta: Lemma
� � 2 � (�+ � � S) + 2 �m ��=(n�m) + n �

+ � ��
+ n � � ��=(n�m)

� � � ((� + 2 ��) �m + 2 � (�+ � � S +
+ � �R

+ � ��

Proof

x; y; z: Var number

mult div: Lemma y 6= 0 � x=y � y = x

mult div proof: Prove mult div

step1: Lemma
� � 2 � (�+ � � S) + 2 �m ��=(n�m) + n �

+ � ��
+ n � � ��=(n�m)

� � � (n�m)
� 2 � (�+ � � S) � (n�m) + 2 �m ��

+ � �� � (n�m)
+ n � � ��

Appendix C. Speci�cations

step1 proof: Prove step1 from
mult mon2
fx 2 � (�+ � � S) + 2 �m ��=(n�m) + n � � �R=(n�m)

+ � ��
+ n � � ��=(n�m),

y �,
z n�mg,

mult div fx 2 �m ��, y n �mg,
mult div fx n � � �R, y n�mg,
mult div fx n � � ��, y n�mg,
C0

step2: Lemma
� � n � � �m+ 2 � (�+ � � S) � (n �m) + 2 �m ��+ n � � �R

+ � �� � (n �m)
+ n � � ��

� � � � �m=n + 2 � (� + � � S) � (n�m)=n+ 2 �m ��=n

+ � �R

+ � �� � (n �m)=n
+ � ��

step2 proof: Prove step2 from
div mon2
fz n,
y � � n,
x

 � �m + 2 � (�+ � � S) � (n�m) + 2 �m ��+ n � � �R

+ � �� � (n �m)
+ n � � ��g,

npos

�nal: Prove rearrange delta from step1, step2

End juggle

juggle tcc: Module

Using juggle

Exporting all with juggle

Theory

y: Var number

rearrange delta TCC1: Formula ((n�m) 6= 0

rearrange delta TCC2: Formula
(� � 2 � (�+ � � S) + 2 �m ��=(n�m) + n

+ � ��
+ n � � ��=(n�m))

� (n 6= 0)

mult div TCC1: Formula (y 6= 0) � (y 6= 0)

step2 TCC1: Formula
(� � n � � �m+ 2 � (�+ � � S) � (n �m) + 2

+ � �� � (n�m)
+ n � � ��)

� (n 6= 0)

Proof

rearrange delta TCC1 PROOF: Prove rearran

rearrange delta TCC2 PROOF: Prove rearran

mult div TCC1 PROOF: Prove mult div TCC

step2 TCC1 PROOF: Prove step2 TCC1

End juggle tcc

Appendix C. Speci�cations

main: Module

Using natinduction; algorithm; lemma6; summations; juggle

Proof

p; q; r: Var proc

i; j; k: Var period

T : Var clocktime

basis: Lemma S1(0)

basis proof: Prove basis from
S1 fi 0g,
sublemma A fi 0, T T@p3, p p@p1, q q@p1g,
S1C fi 0, p p@p1, q q@p1g,
A0 fp p@p1, q q@p1g,
C5

ind step: Lemma S1(i) � S1(i + 1)

ind proof: Prove ind step from
S1 fp p@p2, q q@p2g,
S1 fi i + 1g,
culmination fT T@p5, p p@p2, q q@p2g,
rearrange delta,
S1C fi i + 1, p p@p2, q q@p2g,
C6,
S1A lemma

Theorem 1 proof: Prove Theorem 1 from
basis, ind step fi i@p3g, induction fn i, prop S1g

End main

top: Module

Proof

Using main; numeric types; numeric types tcc p
sigmaprops tcc; natprops tcc; algorithm tcc; ar
absolutes tcc; sums tcc; summations tcc; juggle

rearrange delta TCC1 PROOF: Prove rearran

rearrange delta TCC2 PROOF: Prove rearran

step2 TCC1 PROOF: Prove step2 TCC1 fro

culmination TCC1 PROOF: Prove culminatio

l2 TCC1 PROOF: Prove l2 TCC1 from npos

l5 TCC1 PROOF: Prove l5 TCC1 from npos

abs recip TCC2 PROOF: Prove abs recip TC

C6 TCC1 PROOF: Prove C6 TCC1 from C0

End top

Appendix D

Raw Speci�cations

In order to save paper and expense, the raw speci�cation listings are omit-
ted from this version of the report. They are available on request from the
authors.

128

